Back to the seventies

In the 70's, Valiant defined two algebraic complexity classes: VP and VNP. What are they?

Definition. A (family of) polynomial $\left(f_{n}\right) \in \mathbb{F}[X]$ over poly (n) variables and of (total) degree d, polynomial in n, is said to belong to $V P$ if there is a polynomial size arithmetic circuit $\left(C_{n}\right)$ computing it. [IIlustration of what's an arithmetic circuit]

Determinant, denoted det_{n}, lies in $V P$.

Permanent harder than Determinnat?

Definition. A polynomial $\left(f_{n}\right) \in \mathbb{F}[X]$, is said to belong to $V N P$ if there is a polynomial g_{n} in $V P$ such that : $f_{n}\left(x, y_{1}, . ., y_{n}\right)=\sum_{\varepsilon \in\{0,1\}^{n}} g_{n}\left(x, y_{\varepsilon}\right)$, where X is a (poly-size) set of variables, independent of y.
A key example is per ${ }_{n}=\sum_{\sigma} \Pi_{[n]} x_{i, \sigma(i)}$. It lies in VNP as the following formula shows:
per $_{n}=\sum_{T \subset[n]}(-1)^{n-|T|} \prod_{i=1}^{n} \sum_{j \in T} x_{i, j}$.

Indeed $p e r_{n}$ is $V N P$-complete, meaning any other polynomial $g_{n}(X)$ in VNP is a projection of $\operatorname{per}_{N}(A)$ (where $A=A(X, Y)$ has poly-size in n.)

and what do we expect?

Fact. det ${ }_{n}$ is not $V P$-complete, it is $V Q P$-complete, i.e. any $g_{n} \in V P$ is a projection of some $\operatorname{det}_{N}(A)$ with $N=n^{O(\log n)}$.
per ${ }_{n}$ should not be a projection of det_{N}, that is we expect $V N P \neq V Q P$. This is Valiant's second hypothesis.

Valiant's first hypothesis, the phare conjecture in this theory, is that $V P \neq V N P$. Very roughly, we loose non-negligible information by shutting down dimension of our algebraic varieties.

An intermediate class

The algebraic class of branching programs, is an intermediate model between arithmetic formulas and circuits. It "captures the computational power of matrix multiplication", meaning $I M M_{n, d}$, the $(1,1)$-entry of a product of d matrices of dimension $n \times n$, is complete for this class.
One of first successes in the theory was achieved by Ran Raz, for $I M M_{n, d}$, he introduced the partial derivatives method. It consists of studying dimension of a certain subspace of derivatives, and its robustness upon deletions during computation.

what we can prove so far

Restricted models have been studied thoroughly in the last 20 years : small depth circuits, monotone circuits, bounded degree circuits, multilinear or syntactically multilinear ones, and one can choose a setting with more constrained algebra, for instance not all variables commute.

Vinay, Agrawal, Koiran and Tavenas obtained a reduction of general model to the study of $\Sigma \Pi \Sigma \Pi$, i.e. subclass of depth four circuits : an exponential lower bound, with good enough constants, in the restricted case, implies $V P \neq V N P$.

Helplessness?

But the best lower bound for small depth-circuits, is not even $n^{\omega(1)}$, it's a bare n^{3}, achieved by Limaye and Srinivasan (Bombay).
They used the shifted partial derivative method, a study of dimensions initiated by Kayal in 2014, together with "design gadgets", a method by Wigderson to exponentially reduce the number of variables in a particular case.

A common framework to prove a lower bound on size

Given a class of computation \mathcal{F}, find a finite measure ρ on polynomials such that : any polynomial computed by $F \in \mathcal{F}$ has a certain structure. For instance it can be written $\sum_{t \leq s} g_{t} h_{t}$; all building blocks $g_{t} h_{t}$ have a small measure : $\rho(g h) \leq A$; some polynomial $f \in V P$ enjoys $\rho(f)>M$.
It follows by considering some F computing f, that $s \geq M / A$.

example : multilinear setting and the rank method (Raz)

Structural result. Let f be a polynomial computed by a multilinear formula. Then

- f can be written as $\sum_{j \leq t} \Pi_{i \leq k_{j}} g_{i}^{(j)}$
- with $k_{j} \geq c \log n$ for all j, g_{1}, \ldots, g_{k} variable-disjoint for all j
- inducing a partition $X_{1} \cup \ldots \cup X_{k}$ of [n] such that all X_{i} have size at least $n^{7 / 8}$.
- Moreover $t \leq s^{2}$.

Rank method

Then building blocks are polynomials $g_{1} \ldots g_{k}$, that is a product of a logarithmic (or more) number of multilinear factors defined on disjoint sets. What quantity is small for such product? how about simultaneously small for a quadratic number of such products?
Let $\mu(f)=\min _{Y} r k_{Y}(f)$ be the minimal rank of multilinear f seen as a $2^{p} \times 2^{q}$ matrix, where $p=|Y|$ and $q=n-p$.

Rank method: full-rank polynomials

A polynomial is full-rank if $\mu(f)=2^{n / 2}$ when Y runs over $\binom{[n]}{n / 2}$, that is when the matrix $\Gamma_{Y}(f)$ has maximal rank for all balanced colorings of the set of variables.

Claim : one can unbalance a polynomial number of (distinct) $g_{1} \ldots g_{k}$ simultaneously.

on board

- define a full-rank polynomial
- use probabilistic argument to prove existence of unbalancing coloring
- refine separtation by changing the target poynomial (Dvir et al.)
- how the bound is weakened upon less restrictive structural result (Alon-Kumar-Volk et al.)

future work?

- The most general separations so far are the n^{3} bound by Srinivasan for $\Sigma \Pi \Sigma$ model, and the $n^{2} /(\log n)^{2}$ bound for syntactically multilinear circuits by Alon et al.
- The only known result for the general setting is due to Strassen (back to the 80's), it gives a $\Omega(n \log n)$ lower bound to compute $\left(x_{1}+\ldots+x_{n}\right)^{k}$, and the argument only uses a theorem by Bezout in algebraic geometry, bounding the cardinal of a finite intersection of varieties.

