Prime numbers with preassigned digits

Cathy Swaenepoel

Institut de Mathématiques de Marseille, Université d'Aix-Marseille, France.

Inter'Actions 2019, Bordeaux.

Let $g \ge 2$. Any integer $k \ge 0$ can be written in base g as

$$k = \sum_{j \ge 0} \varepsilon_j(k) g^j$$

where, for any $j \ge 0$, $\varepsilon_j(k) \in \{0, \dots, g-1\}$ is the *j*-th digit of k.

independence?base g expansion \longleftrightarrow multiplicative representation (as a product of prime factors)

Are the digits of primes "random"?

- Gelfond's conjecture: the sum of digits of primes is well distributed.
- Mauduit-Rivat, Drmota-Mauduit-Rivat
- Maynard: primes with missing digits

Prime numbers in sparse sets

- Primes of the form $2^n 1$ (Mersenne primes) ?
- Primes of the form $n^2 + 1$?
- Primes of the form $m^2 + n^4$ (Friedlander-Iwaniec)
- Primes of the form $m^3 + 2n^3$ (Heath-Brown)
- Primes with missing digits (Maynard)

Consider the set of integers $k < g^n$.

For some positions (between 0 and n-1), we preassign (i.e. prescribe) the value of the digits at these positions.

The larger the number of preassigned digits is, the smaller the number of integers $< g^n$ with these digits is.

If the number of preassigned digits tends to $+\infty$ as $n\to+\infty$ then those integers form a "thin" or "sparse" subset.

Let *n* large, $A \subset \{0, ..., n-1\}$ and $(d_j)_{j \in A} \in \{0, ..., g-1\}^A$.

Question: Estimate $|\{p < g^n : \forall j \in A, \varepsilon_j(p) = d_j\}|$ with |A| as large as possible and (almost) no restriction on the set A itself and on the digits d_j .

Very natural conditions: $0 \in A$ and $(d_0, g) = 1$.

Expected formula?

Let *n* large, $A \subset \{0, ..., n-1\}$ and $(d_j)_{j \in A} \in \{0, ..., g-1\}^A$.

Question: Estimate $|\{p < g^n : \forall j \in A, \varepsilon_j(p) = d_j\}|$ with |A| as large as possible and (almost) no restriction on the set A itself and on the digits d_j .

Very natural conditions: $0 \in A$ and $(d_0, g) = 1$.

Expected formula?

$$\sum_{\substack{p < g^n \\ \forall j \in A, \, \varepsilon_j(p) = d_j}} 1 \approx \frac{g^{n-|A|}}{\log g^n} \frac{g}{\varphi(g)} \tag{1}$$

Previous results on this problem

- Kátai (1986).
- Wolke (2005): asymptotic, $|A| \le 2$.
- Harman (2006): lower bound, $|A| \leq \text{constant}$.
- Harman-Kátai (2008): asymptotic, $|A| \ll \sqrt{n} (\log n)^{-1}$.
- Bourgain (2013): asymptotic, $|A| \ll n^{4/7} (\log n)^{-4/7}$, in base 2.
- Bourgain (2015): There exists a constant c > 0 such that, for any $A \subset \{0, \ldots, n-1\}$ satisfying $0 \in A$ and $|A| \leq cn$, for any $(d_j)_{j \in A} \in \{0, 1\}^A$ such that $d_0 = 1$,

$$\sum_{\substack{0 \le k < 2^n \\ \forall j \in A, \, \varepsilon_j(k) = d_j}} \Lambda(k) = 2^{n-|A|+1} \left(1 + o(1)\right)$$

as $n \to \infty,$ where Λ is the von Mangoldt function.

Some new questions arised from Bourgain's paper (2015):

- give an explicit admissible value for the proportion c (as large as possible) in base g = 2,
- generalize this result in any base $g \ge 2$,
- for each $g \ge 2$, give an explicit admissible value for the proportion c,
- provide and clarify some arguments which are not developped in Bourgain's paper.

Theorem 1 (S.)

Let $g \ge 2$. There is an explicit $c_0 = c_0(g) \in]0, 1/2[$ such that: for any $0 < c < c_0$, there exist $n_0 = n_0(g,c) \ge 1$ and $\delta = \delta(g,c) > 0$ such that for any $n \ge n_0$, $A \subset \{0, \ldots, n-1\}$ satisfying $0 \in A$ and

 $|A| \le cn,$

for any $(d_j)_{j\in A}\in\{0,\ldots,g-1\}^A$ such that $(d_0,g)=1$, we have

$$\sum_{\substack{0 \le k < g^n \\ ij \in A, \varepsilon_j(k) = d_j}} \Lambda(k) = g^{n-|A|} \frac{g}{\varphi(g)} \left(1 + O_{g,c} \left(n^{-\delta} \right) \right).$$

This generalizes Bourgain's result (2015) in any base.

 \rightarrow In any base, the number of primes with a given proportion $< c_0$ of preassigned digits is asymptotically as expected (under some technical conditions on A and the digits d_j).

Cathy Swaenepoel

A

Theorem 1 holds with $c_0(g)$ given by

g	2	3	4	5	10	10^{3}	$2 \cdot 3^{100}$	2^{200}
$c_0(g) \cdot 10^3$	2.1	3.1	3.6	4.0	4.7	6.8	0.7	9.0

Let $n \in \mathbb{N}$ be large, $A \subset \{0, \ldots, n-1\}$ and $(d_j)_{j \in A} \in \{0, \ldots, g-1\}^A$ such that $0 \in A$ and $(d_0, g) = 1$. Denote $N = g^n$ and

$$f(k) = \begin{cases} 1 & \text{if } 0 \le k < g^n \text{ and for any } j \in A, \ \varepsilon_j(k) = d_j, \\ 0 & \text{otherwise.} \end{cases}$$

We want to establish that if $|A| \leq cn$ with c small enough then

$$\sum_{k \le N} \Lambda(k) f(k) = g^{n-|A|} \frac{g}{\varphi(g)} + o_{g,c}(g^{n-|A|})$$

as $n \to \infty$.

Actually, we will obtain a quantitative version.

Use the circle method:

$$\sum_{k\leq N}\Lambda(k)f(k)=\int_0^1S(\alpha)\overline{R(\alpha)}d\alpha$$

where

$$S(\alpha) = \sum_{k \le N} \Lambda(k) \, \mathbf{e}(k\alpha)$$

can be large only when α is close to a rational with small denominator i.e. α is in a major arc

and
$$R(\alpha) = \sum_{k \le N} f(k) e(k\alpha).$$

depends on the digital conditions

- integral over major arcs \rightarrow main term (+ error term)
- integral over minor arcs \rightarrow error term

Fourier transform of f

$$F(\lambda) = g^{-n} \sum_{0 \le k < g^n} f(k) e(-k\lambda) = N^{-1} \overline{R(\lambda)}$$

By denoting $\Phi_g(t) = \left|\sum_{v=0}^{g-1} e(vt)\right| = \left|\frac{\sin \pi gt}{\sin \pi t}\right|$ and writing k in base g,

$$|F(\lambda)| = g^{-|A|} \prod_{\substack{0 \le j \le n-1\\ j \notin A}} \frac{\Phi_g\left(\lambda g^j\right)}{g}.$$

For
$$g = 2$$
, $|F(\lambda)| = 2^{-|A|} \prod_{\substack{0 \le j \le n-1 \\ j \notin A}} \left| \cos \pi \lambda 2^j \right|.$

We need very sharp upper bounds of $||F||_1$ and |F(a/q)|.

 $B_1 \leq B$ "small" powers of N with $B_1 = o(B)$.

• Major arcs:

$$\mathfrak{M} = \bigcup_{\substack{1 \le q \le B_1 \ a \le q \\ (a,q) = 1}} \mathfrak{M}(q,a)$$

where $\mathfrak{M}(q, a)$ is the interval $\left| \alpha - \frac{a}{q} \right| \leq \frac{B}{qN}$ modulo 1.

• Minor arcs:

$$\mathfrak{m} = [0,1[\backslash \mathfrak{M}.$$

Note that Bourgain does not introduce B_1 (i.e. $B_1 = B$) but later a localization argument in the study of the major arcs does not seem to work in all cases.

$$\int_{\mathfrak{m}} \left| S(\alpha) \overline{R(\alpha)} \right| d\alpha \le N \left\| F \right\|_{1} \sup_{\alpha \in \mathfrak{m}} \left| S(\alpha) \right|$$

Use a very sharp upper bound of $||F||_1$.

Use Vinogradov Lemma to bound $|S(\alpha)|$ over minor arcs (classical).

Major arcs contribution

$$\int_{\mathfrak{M}} S(\alpha) \overline{R(\alpha)} d\alpha = \sum_{1 \le q \le B_1} \sum_{\substack{1 \le a \le q \\ (a,q) = 1}} \int_{\left|\alpha - \frac{a}{q}\right| \le \frac{B}{qN}} S(\alpha) \overline{R(\alpha)} d\alpha$$

First step: replace the indicator function of the interval $\left|\alpha - \frac{a}{q}\right| \le \frac{B}{qN}$ by the smooth function

$$\alpha \mapsto w\left(\frac{qN}{B}\left(\alpha - \frac{a}{q}\right)\right)$$

where w satisfies: $0 \le w \le 1$, w = 1 on [-1, 1], $\operatorname{supp} w \subset [-2, 2]$, $w \in \mathcal{C}^{\infty}(\mathbb{R})$, $\widehat{w}(y) = O\left(e^{-|y|^{1/2}}\right)$ for any $y \in \mathbb{R}$ (this follows from a construction of Ingham).

- \rightarrow This creates an error term which is bounded by $\int_{\mathfrak{m}} \left| S(\alpha) \overline{R(\alpha)} \right| d\alpha$.
- \rightarrow The decreasing speed of \widehat{w} will be essential.

 $S(\alpha)\overline{R(\alpha)} = \text{double sum}$

Up to an admissible error, replace $S(\alpha)$ by

$$\frac{1}{\varphi(q)} \sum_{\chi \mod q} \tau(\overline{\chi}) \chi(a) \sum_{k \le N} \chi(k) \Lambda(k) \, \mathbf{e}(k\beta) \tag{2}$$

where $\beta = \alpha - \frac{a}{q}$.

- principal characters \rightarrow main term (+ error term)
- nonprincipal characters \rightarrow error term

Contribution of the principal characters

- Use the decreasing speed of ŵ and B₁ = o(B) to restrict the summation over k ≤ N in (2) to k in a "short" interval.
- Use an estimate for primes in short intervals with a good enough error term (e.g. Huxley, Karatsuba).

$$\text{principal characters} \to \sum_{\substack{q \leq B_1 \\ q \text{ sf}}} \sum_{1 \leq k_2 \leq N} f(k_2) \frac{\mu((q,k_2))}{\varphi\left(\frac{q}{(q,k_2)}\right)} + \text{ error}$$

• Use sharp upper bounds of |F(a/q)|.

double sum
$$= g^{n-|A|} \frac{g}{\varphi(g)} + \text{ error}$$

Rem: the q's which have a non-zero contribution in the main term are the squarefree divisors of the base g.

Use sharp results on zeros of Dirichlet *L*-functions:

- zero density estimates,
- an improved zero-free region for special moduli (Iwaniec).

Use sharp upper bounds of |F(a/q)|.

If g has several prime factors then new difficulties occur.

Choosing appropriately the parameters B_1 and B and taking c sufficiently small, we finally obtain

$$\sum_{k \le N} \Lambda(k) f(k) = g^{n-|A|} \frac{g}{\varphi(g)} \left(1 + O_{g,c}(n^{-\delta}) \right)$$

for some $\delta > 0$ depending only on g and c.

Choosing appropriately the parameters B_1 and B and taking c sufficiently small, we finally obtain

$$\sum_{k \le N} \Lambda(k) f(k) = g^{n-|A|} \frac{g}{\varphi(g)} \left(1 + O_{g,c}(n^{-\delta}) \right)$$

for some $\delta > 0$ depending only on g and c.

Thank you for your attention!