Prime numbers with preassigned digits

Cathy Swaenepoel

Institut de Mathématiques de Marseille, Université d'Aix-Marseille, France.

Inter'Actions 2019, Bordeaux.

Digits

Let $g \geq 2$. Any integer $k \geq 0$ can be written in base g as

$$
k=\sum_{j \geq 0} \varepsilon_{j}(k) g^{j}
$$

where, for any $j \geq 0, \varepsilon_{j}(k) \in\{0, \ldots, g-1\}$ is the j-th digit of k.
independence?
base g expansion \longleftrightarrow multiplicative representation (as a product of prime factors)

many important and interesting problems

Are the digits of primes "random"?

- Gelfond's conjecture: the sum of digits of primes is well distributed.
- Mauduit-Rivat, Drmota-Mauduit-Rivat
- Maynard: primes with missing digits

Prime numbers in sparse sets

- Primes of the form $2^{n}-1$ (Mersenne primes) ?
- Primes of the form $n^{2}+1$?
- Primes of the form $m^{2}+n^{4}$ (Friedlander-Iwaniec)
- Primes of the form $m^{3}+2 n^{3}$ (Heath-Brown)
- Primes with missing digits (Maynard)

Integers with preassigned digits

Consider the set of integers $k<g^{n}$.
For some positions (between 0 and $n-1$),
we preassign (i.e. prescribe) the value of the digits at these positions.
The larger the number of preassigned digits is, the smaller the number of integers $<g^{n}$ with these digits is.

If the number of preassigned digits tends to $+\infty$ as $n \rightarrow+\infty$ then those integers form a "thin" or "sparse" subset.

An interesting problem

Let n large, $A \subset\{0, \ldots, n-1\}$ and $\left(d_{j}\right)_{j \in A} \in\{0, \ldots, g-1\}^{A}$.
Question: Estimate $\left|\left\{p<g^{n}: \forall j \in A, \varepsilon_{j}(p)=d_{j}\right\}\right|$ with $|A|$ as large as possible and (almost) no restriction on the set A itself and on the digits d_{j}.
Very natural conditions: $0 \in A$ and $\left(d_{0}, g\right)=1$.
Expected formula?

An interesting problem

Let n large, $A \subset\{0, \ldots, n-1\}$ and $\left(d_{j}\right)_{j \in A} \in\{0, \ldots, g-1\}^{A}$.
Question: Estimate $\left|\left\{p<g^{n}: \forall j \in A, \varepsilon_{j}(p)=d_{j}\right\}\right|$ with $|A|$ as large as possible and (almost) no restriction on the set A itself and on the digits d_{j}.

Very natural conditions: $0 \in A$ and $\left(d_{0}, g\right)=1$.
Expected formula?

$$
\sum_{\substack{p<g^{n} \\ \forall j \in A, \varepsilon_{j}(p)=d_{j}}} 1 \approx \frac{g^{n-|A|}}{\log g^{n}} \frac{g}{\varphi(g)}
$$

- Kátai (1986).
- Wolke (2005): asymptotic, $|A| \leq 2$.
- Harman (2006): lower bound, $|A| \leq$ constant.
- Harman-Kátai (2008): asymptotic, $|A| \ll \sqrt{n}(\log n)^{-1}$.
- Bourgain (2013): asymptotic, $|A| \ll n^{4 / 7}(\log n)^{-4 / 7}$, in base 2 .
- Bourgain (2015): There exists a constant $c>0$ such that, for any $A \subset\{0, \ldots, n-1\}$ satisfying $0 \in A$ and $|A| \leq c n$, for any $\left(d_{j}\right)_{j \in A} \in\{0,1\}^{A}$ such that $d_{0}=1$,

$$
\sum_{\substack{0 \leq k<2^{n} \\ \forall j \in A, \varepsilon_{j}(k)=d_{j}}} \Lambda(k)=2^{n-|A|+1}(1+o(1))
$$

as $n \rightarrow \infty$, where Λ is the von Mangoldt function.

Some new questions arised from Bourgain's paper (2015):

- give an explicit admissible value for the proportion c (as large as possible) in base $g=2$,
- generalize this result in any base $g \geq 2$,
- for each $g \geq 2$, give an explicit admissible value for the proportion c,
- provide and clarify some arguments which are not developped in Bourgain's paper.

New result

Theorem 1 (S.)

Let $g \geq 2$. There is an explicit $\left.c_{0}=c_{0}(g) \in\right] 0,1 / 2[$ such that:
for any $0<c<c_{0}$, there exist $n_{0}=n_{0}(g, c) \geq 1$ and $\delta=\delta(g, c)>0$ such that for any $n \geq n_{0}, A \subset\{0, \ldots, n-1\}$ satisfying $0 \in A$ and

$$
|A| \leq c n,
$$

for any $\left(d_{j}\right)_{j \in A} \in\{0, \ldots, g-1\}^{A}$ such that $\left(d_{0}, g\right)=1$, we have

$$
\sum_{\substack{0 \leq k<g^{n} \\ \forall j \in A, \varepsilon_{j}(k)=d_{j}}} \Lambda(k)=g^{n-|A|} \frac{g}{\varphi(g)}\left(1+O_{g, c}\left(n^{-\delta}\right)\right) .
$$

This generalizes Bourgain's result (2015) in any base.
\rightarrow In any base, the number of primes with a given proportion $<c_{0}$ of preassigned digits is asymptotically as expected (under some technical conditions on A and the digits d_{j}).

Explicit values of c_{0}

Theorem 1 holds with $c_{0}(g)$ given by

g	2	3	4	5	10	10^{3}	$2 \cdot 3^{100}$	2^{200}
$c_{0}(g) \cdot 10^{3}$	2.1	3.1	3.6	4.0	4.7	6.8	0.7	9.0

Notations for the proof of Theorem 1

Let $n \in \mathbb{N}$ be large, $A \subset\{0, \ldots, n-1\}$ and $\left(d_{j}\right)_{j \in A} \in\{0, \ldots, g-1\}^{A}$ such that $0 \in A$ and $\left(d_{0}, g\right)=1$. Denote $N=g^{n}$ and

$$
f(k)=\left\{\begin{array}{ll}
1 & \text { if } 0 \leq k<g^{n} \\
0 & \text { otherwise }
\end{array} \text { and for any } j \in A, \varepsilon_{j}(k)=d_{j},\right.
$$

We want to establish that if $|A| \leq c n$ with c small enough then

$$
\sum_{k \leq N} \Lambda(k) f(k)=g^{n-|A|} \frac{g}{\varphi(g)}+o_{g, c}\left(g^{n-|A|}\right)
$$

as $n \rightarrow \infty$.
Actually, we will obtain a quantitative version.

Method for the proof of Theorem 1

Use the circle method:

$$
\sum_{k \leq N} \Lambda(k) f(k)=\int_{0}^{1} S(\alpha) \overline{R(\alpha)} d \alpha
$$

where

$$
\underbrace{S(\alpha)=\sum_{k \leq N} \Lambda(k) \mathrm{e}(k \alpha)}_{\text {an be large only when } \alpha \text { is close to }} \quad \text { and } \quad \underbrace{R(\alpha)=\sum_{k \leq N} f(k) \mathrm{e}(k \alpha)}_{\text {depends on the digital conditions }}
$$

a rational with small denominator
i.e. α is in a major arc

- integral over major arcs \rightarrow main term (+ error term)
- integral over minor arcs \rightarrow error term

$$
F(\lambda)=g^{-n} \sum_{0 \leq k<g^{n}} f(k) \mathrm{e}(-k \lambda)=N^{-1} \overline{R(\lambda)}
$$

By denoting $\Phi_{g}(t)=\left|\sum_{v=0}^{g-1} \mathrm{e}(v t)\right|=\left|\frac{\sin \pi g t}{\sin \pi t}\right|$ and writing k in base g,

$$
|F(\lambda)|=g^{-|A|} \prod_{\substack{0 \leq j \leq n-1 \\ j \notin A}} \frac{\Phi_{g}\left(\lambda g^{j}\right)}{g} .
$$

For $g=2, \quad|F(\lambda)|=2^{-|A|} \prod_{\substack{0 \leq j \leq n-1 \\ j \notin A}}\left|\cos \pi \lambda 2^{j}\right|$.
We need very sharp upper bounds of $\|F\|_{1}$ and $|F(a / q)|$.

Major and minor arcs

$B_{1} \leq B$ "small" powers of N with $B_{1}=o(B)$.

- Major arcs:

$$
\mathfrak{M}=\bigcup_{1 \leq q \leq B_{1}} \bigcup_{\substack{\leq a \leq q \\(a, q)=1}} \mathfrak{M}(q, a)
$$

where $\mathfrak{M}(q, a)$ is the interval $\left|\alpha-\frac{a}{q}\right| \leq \frac{B}{q N}$ modulo 1 .

- Minor arcs:

$$
\mathfrak{m}=[0,1[\backslash \mathfrak{M} .
$$

Note that Bourgain does not introduce B_{1} (i.e. $B_{1}=B$) but later a localization argument in the study of the major arcs does not seem to work in all cases.

$$
\int_{\mathfrak{m}}|S(\alpha) \overline{R(\alpha)}| d \alpha \leq N\|F\|_{1} \sup _{\alpha \in \mathfrak{m}}|S(\alpha)|
$$

Use a very sharp upper bound of $\|F\|_{1}$.
Use Vinogradov Lemma to bound $|S(\alpha)|$ over minor arcs (classical).

$$
\int_{\mathfrak{M}} S(\alpha) \overline{R(\alpha)} d \alpha=\sum_{\substack{1 \leq q \leq B_{1} \\(\leq a, q)=1}} \sum_{\left|\alpha-\frac{\alpha}{q}\right| \leq \frac{B}{q N}} S(\alpha) \overline{R(\alpha)} d \alpha
$$

First step: replace the indicator function of the interval $\left|\alpha-\frac{a}{q}\right| \leq \frac{B}{q N}$ by the smooth function

$$
\alpha \mapsto w\left(\frac{q N}{B}\left(\alpha-\frac{a}{q}\right)\right)
$$

where w satisfies: $0 \leq w \leq 1, w=1$ on $[-1,1]$, $\operatorname{supp} w \subset[-2,2]$, $w \in \mathcal{C}^{\infty}(\mathbb{R}), \widehat{w}(y)=O\left(e^{-|y|^{1 / 2}}\right)$ for any $y \in \mathbb{R}$
(this follows from a construction of Ingham).
\rightarrow This creates an error term which is bounded by $\int_{\mathfrak{m}}|S(\alpha) \overline{R(\alpha)}| d \alpha$.
\rightarrow The decreasing speed of \widehat{w} will be essential.

$$
S(\alpha) \overline{R(\alpha)}=\text { double sum }
$$

Up to an admissible error, replace $S(\alpha)$ by

$$
\begin{equation*}
\frac{1}{\varphi(q)} \sum_{\chi \bmod q} \tau(\bar{\chi}) \chi(a) \sum_{k \leq N} \chi(k) \Lambda(k) \mathrm{e}(k \beta) \tag{2}
\end{equation*}
$$

where $\beta=\alpha-\frac{a}{q}$.

- principal characters \rightarrow main term (+ error term)
- nonprincipal characters \rightarrow error term

Contribution of the principal characters

- Use the decreasing speed of \widehat{w} and $B_{1}=o(B)$ to restrict the summation over $k \leq N$ in (2) to k in a "short" interval.
- Use an estimate for primes in short intervals with a good enough error term (e.g. Huxley, Karatsuba).

$$
\text { principal characters } \rightarrow \sum_{\substack{q \leq B_{1} \\ q \mathrm{sf}}} \sum_{1 \leq k_{2} \leq N} f\left(k_{2}\right) \frac{\mu\left(\left(q, k_{2}\right)\right)}{\varphi\left(\frac{q}{\left(q, k_{2}\right)}\right)}+\text { error }
$$

- Use sharp upper bounds of $|F(a / q)|$.

$$
\text { double sum }=g^{n-|A|} \frac{g}{\varphi(g)}+\text { error }
$$

Rem: the q 's which have a non-zero contribution in the main term are the squarefree divisors of the base g.

Contribution of the nonprincipal characters

Use sharp results on zeros of Dirichlet L-functions:

- zero density estimates,
- an improved zero-free region for special moduli (Iwaniec).

Use sharp upper bounds of $|F(a / q)|$.

If g has several prime factors then new difficulties occur.

Conclusion

Choosing appropriately the parameters B_{1} and B and taking c sufficiently small, we finally obtain

$$
\sum_{k \leq N} \Lambda(k) f(k)=g^{n-|A|} \frac{g}{\varphi(g)}\left(1+O_{g, c}\left(n^{-\delta}\right)\right)
$$

for some $\delta>0$ depending only on g and c.

Conclusion

Choosing appropriately the parameters B_{1} and B and taking c sufficiently small, we finally obtain

$$
\sum_{k \leq N} \Lambda(k) f(k)=g^{n-|A|} \frac{g}{\varphi(g)}\left(1+O_{g, c}\left(n^{-\delta}\right)\right)
$$

for some $\delta>0$ depending only on g and c.

Thank you for your attention!

