Eulerian polynomials and excedance statistics

Bin HAN

Institut Camille Jordan \& University Lyon I
Based on joint work with Jiang Zeng
Colloque Inter'Actions en Mathématiques

?
 INTER'ACTIONS 2019

21 mai 2019

Introduction

If $A=\left\{a_{k}\right\}_{k=0}^{n}$ is a finite sequence of real numbers, then
■ A is unimodal if there is an index $0 \leq j \leq n$ such that

$$
a_{0} \leq \cdots \leq a_{j-1} \leq a_{j} \geq a_{j+1} \geq \cdots \geq a_{n} .
$$

- A is log-concave if

$$
a_{j}^{2} \geq a_{j-1} a_{j+1}, \quad \text { for all } 1 \leq j \leq n
$$

■ the generating polynomial, $p_{A}(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$, is called real rooted if all its zeros are real.

- the polynomial $p_{A}(x)$ or sequence A is called palindromic if $a_{i}=a_{n-i}$ for $0 \leq j \leq n / 2$.

Example

The n-th row of Pascal's triangle $\left\{\binom{n}{k}\right\}_{k=0}^{n}:\binom{n}{0},\binom{n}{1},\binom{n}{2}, \ldots,\binom{n}{n}$:

The explicit formula $\binom{n}{k}=n!/ k!(n-k)!$ implies

$$
\frac{\binom{n}{k}^{2}}{\binom{n}{k-1}\binom{n}{k+1}}=\frac{(k+1)(n-k+1)}{k(n-k)}>1 .
$$

A basic theorem

Let $A=\left\{a_{k}\right\}_{k=0}^{n}$ be a finite sequence of nonnegative numbers.
(a) If $p_{A}(x)$ is real-rooted, then the sequence $A^{\prime}:=\left\{a_{k} /\binom{n}{k}\right\}_{k=0}^{n}$ is log-concave.
(b) If A^{\prime} is log-concave, then so is A.
(c) If A is \log-concave and positive, then A is unimodal.

Remark

We say A is ultra-log-concave if A^{\prime} is log-concave.
real-roots \Longrightarrow ultra-log-concavity \Longrightarrow log-concavity \Longrightarrow unimodality

$$
a_{k}^{2} \geq a_{k-1} a_{k+1}\left(1+\frac{1}{k}\right)\left(1+\frac{1}{n-k}\right)
$$

Unimodality and γ-positivity

The sequence $A=\left\{a_{k}\right\}_{k=0}^{n}$ is symmetric (or plindromic) with center of symmetry $n / 2$ if $a_{k}=a_{n-k}$ for $0 \leq k \leq n / 2$. The linear space of polynomials $h(x)=\sum_{k=0}^{n} a_{x} x^{k} \in \mathfrak{R}[x]$ which are symmetric with center of symmetry $n / 2$ has a basis

$$
B_{n}:=\left\{x^{k}(1+x)^{n-2 k}\right\}_{k=0}^{\lfloor n / 2\rfloor} .
$$

Indeed, we have the so-called Waring's formula:

$$
x^{n}+y^{n}=\sum_{j=0}^{\lfloor n / 2\rfloor}(-1)^{j} \frac{n}{n-j}\binom{n-j}{j}(x y)^{j}(x+y)^{n-2 j}
$$

Proof of the symmetric expansion

Let $\gamma_{n, j}=(-1)^{j} \frac{n}{n-j}\binom{n-j}{j}$, then

$$
x^{n}+y^{n}=\sum_{j=0}^{n / 2} \gamma_{n, j}(x y)^{j}(x+y)^{n-2 j}
$$

As $a_{j}=a_{n-j}$ (symmetry), we have

$$
\begin{aligned}
a_{j} x^{j}+a_{n-j} x^{n-j} & =a_{j} x^{j}\left(1+x^{n-2 j}\right) \\
& =a_{j} x^{j} \sum_{k} \gamma_{n-2 j, k} x^{k}(x+1)^{n-2 j-2 k} \\
& =a_{j} \sum_{k} \gamma_{n-2 j, k} x^{k+j}(x+1)^{n-2(j+k)}
\end{aligned}
$$

Real-roots and symmetry

If $h(x)=\sum_{k=0}^{n} \gamma_{k} x^{k}(1+x)^{n-2 k}$ with $\gamma_{k} \geq 0$ we say that h is γ-nonnegative. Since the binomial coefficients are unimodal, having a nonnegative γ-vector implies unimodality of $\left\{a_{k}\right\}_{k=0}^{n}$. Let Γ_{+}^{n} be the convex cone of polynomials that have nonnegative coefficients when expanded in B_{n}. Clearly

$$
\Gamma_{+}^{n} \cdot \Gamma_{+}^{m} \subset \Gamma_{+}^{m+n}
$$

If $h(x)=\sum_{k=0}^{n} a_{k} x^{k} \in \mathfrak{R}_{+}[x]$ is symmetric with center of symmetry $n / 2$. If all its zeros are real, then we may pair the negative zeros into reciprocal pairs

$$
h(x)=A x^{k} \prod_{I=1}^{\ell}\left(x+\theta_{i}\right)\left(x+1 / \theta_{i}\right)=A x^{k} \prod_{l=1}^{\ell}\left((1+x)^{2}+\left(\theta_{i}+1 / \theta_{i}-2\right) x\right)
$$

where $A>0$. Since x and $(1+x)^{2}+\left(\theta_{i}+1 / \theta_{i}-2\right) x$ are in Γ_{+}^{1}, we see that $h(x)$ is γ-nonnegative.

Eulerian polynomials

The eulerian polynomials $A_{n}(t)$ can be defined by

$$
\sum_{n=0}^{\infty} A_{n}(t) \frac{x^{n}}{n!}=\frac{1-t}{1-t e^{(1-t) x}}
$$

The first values of $A_{n}(t):=a_{n, 1} t+a_{n, 2} t^{2}+\cdots+a_{n, n} t^{n}$:

$$
\begin{aligned}
& A_{1}(t)=t \\
& A_{2}(t)=t+t^{2}, \\
& A_{3}(t)=t+4 t^{2}+t^{3}, \\
& A_{4}(t)=t+11 t^{2}+11 t^{3}+t^{4}, \\
& A_{5}(t)=t+26 t^{2}+66 t^{3}+26 t^{4}+t^{5} .
\end{aligned}
$$

Combinatorial interpretations

Let \mathfrak{S}_{n} is the set of permutations on $\{1, \ldots, n\}$.

$$
\begin{aligned}
\operatorname{des} \sigma & =\#\{i \in[n-1] \mid \sigma(i)>\sigma(i+1)\} \\
\operatorname{exc} \sigma & =\#\{i \in[n] \mid \sigma(i)>i\} \\
\operatorname{wex} \sigma & =\#\{i \in[n] \mid \sigma(i) \geq i\}
\end{aligned}
$$

Proposition

$$
A_{n}(t)=\sum_{\sigma \in \mathfrak{S}_{n}} t^{1+\operatorname{des} \sigma}=\sum_{\sigma \in \mathfrak{S}_{n}} t^{1+\operatorname{exc} \sigma}=\sum_{\sigma \in \mathfrak{S}_{n}} t^{\mathrm{wex} \sigma}
$$

Let $\tilde{A}(t)=\sum_{\sigma \in \mathfrak{S}_{n}} t^{\text {exc } \sigma}$. Then

$$
\sum_{n=0}^{\infty} \tilde{A}(t) \frac{x^{n}}{n!}=\frac{1-t}{e^{(t-1) x}-t}
$$

An example for S_{3}

σ	des	exc	wex
123	0	0	3
132	1	1	2
213	1	1	2
231	1	2	2
312	1	1	1
321	2	1	2

Hence

$$
A_{3}(t)=t+4 t^{2}+t^{3}
$$

The equidistribution exc \sim des can be explained by Foata's transformation. The mapping $\sigma \mapsto \tau$ defined by $\tau=\sigma(2) \ldots \sigma(n-1) \sigma(1)$ has the property that $\operatorname{wex}(\sigma)=1+\operatorname{exc}(\tau)$.

Unimodal and symmetric property

Proposition

The Eulerian polynomial $A_{n}(t)$ is symmetric and has only real roots.
Hence $A_{n}(t)$ is γ-positive:

$$
\begin{aligned}
t & =t \\
t+t^{2} & =t \cdot(1+t) \\
t+4 t^{2}+t^{3} & =t \cdot(1+t)^{2}+2 t^{2} \\
t+11 t^{2}+11 t^{3}+t^{4} & =t(1+t)^{3}+8 t^{2}(1+t)
\end{aligned}
$$

This formula implies both the symmetry and the unimodality of the Eulerian numbers.

Foata-Schützenberger, Foata-Strehl in 1970's

Let $\sigma=\sigma_{1} \ldots \sigma_{n} \in \mathfrak{S}_{n}$ with $\sigma(0)=\sigma(n+1)=0$. An integer $i \in[1, n]$ is

■ a peak in σ if $\sigma_{i-1}<\sigma_{i}>\sigma_{i+1}$;
■ a double descent if $\sigma_{i-1}>\sigma_{i}>\sigma_{i+1}$.

Proposition

Let $a_{n, k}$ be the number of permutations of $[n]$ with k peaks and without double descent. Then

$$
A_{n}(t)=\sum_{k=1}^{\lfloor(n-1) / 2\rfloor} a_{n, k} t^{k}(1+t)^{n+1-2 k}
$$

Example: If $n=4, k=2$, then $a_{n, k}=8$:

$$
2134, \quad 3124, \quad 4123, \quad 1423, \quad 2413, \quad 3412, \quad 1324, \quad 2314
$$

peak polynomials

Let $\mathrm{pk} \pi$ be the number of peaks of π and define the peak polynomials

$$
P_{n}^{\mathrm{pk}}(x):=\sum_{\pi \in \mathfrak{S}_{n}} x^{\mathrm{pk} \pi}
$$

Theorem (Stembridge 1997)

For $n \geq 1$, we have

$$
A_{n}(t)=\left(\frac{1+t}{2}\right)^{n-1} P_{n}^{\mathrm{pk}}\left(\frac{4 t}{(1+t)^{2}}\right) .
$$

It is easy to see that Stembridge's identity is equivalent to the γ-expansion formula of Eulerian polynomials.

peak-descent polynomials

Let

$$
P_{n}^{(\mathrm{pk}, \mathrm{des})}(x, t):=\sum_{\pi \in \mathfrak{S}_{n}} x^{\mathrm{pk} \pi} t^{\mathrm{des} \pi}
$$

Theorem (Zhuang 2017)

For $n \geq 1$, we have

$$
A_{n}(t)=\left(\frac{1+x t}{1+x}\right)^{n-1} P_{n}^{(\mathrm{pk}, \mathrm{des})}\left(\frac{(1+x)^{2} t}{(x+t)(1+x t)}, \frac{x+t}{1+x t}\right) .
$$

Brandën's refinement of Eulerian polynomials

Let $\sigma=\sigma(1) \ldots \sigma(n) \in \mathfrak{S}_{n}$, define the statistics

$$
\begin{aligned}
& (2-31) \sigma=\#\{(i, j) \mid 1 \leq i<j \leq n-1, \quad \sigma(j+1)<\sigma(i)<\sigma(j)\}, \\
& (13-2) \sigma=\#\{(i, j) \mid 2 \leq i<j \leq n, \quad \sigma(i-1)<\sigma(j)<\sigma(i)\} .
\end{aligned}
$$

In 2008, Brändén (after the works of Postnikov, Williams and Corteel) considered the refined Eulerian polynomials:

$$
A_{n}(p, q, t):=\sum_{\sigma \in \mathfrak{S}_{n}} p^{(13-2) \sigma} q^{(2-31) \sigma} t^{\operatorname{des} \sigma}
$$

and proved, modifying the Foata-Strehl action, the identity:

$$
A_{n}(p, q, t):=\sum_{k=0}^{\lfloor(n-1) / 2\rfloor} a_{n, k}(p, q) t^{k}(1+t)^{n-1-2 k}
$$

where $2^{n-1-2 k} a_{n, k}(p, q) \in \mathbb{N}[p, q]$.

Our Theorem

Let

$$
P_{n}^{(13-2,2-31, \mathrm{pk}, \text { des })}(p, q, x, t):=\sum_{\pi \in \mathfrak{G}_{n}} p^{(13-2) \pi} q^{(2-31) \pi} x^{\mathrm{pk} \pi} t^{\operatorname{des} \pi}
$$

Theorem

For $n \geq 1$, we have

$$
\begin{aligned}
& A_{n}(p, q, t) \\
= & \left(\frac{1+x t}{1+x}\right)^{n-1} P_{n}^{(13-2,2-31, \mathrm{pk}, \text { des })}\left(p, q, \frac{(1+x)^{2} t}{(x+t)(1+x t)}, \frac{x+t}{1+x t}\right) .
\end{aligned}
$$

Definitions

Definition

For $\sigma \in \mathfrak{S}_{n}$, a value $x=\sigma(i)(i \in[n])$ is called

- a cyclic peak if $i=\sigma^{-1}(x)<x$ and $x>\sigma(x)$;
- a cyclic valley if $i=\sigma^{-1}(x)>x$ and $x<\sigma(x)$;
- a double excedance if $i=\sigma^{-1}(x)<x$ and $x<\sigma(x)$;
- a double drop if $i=\sigma^{-1}(x)>x$ and $x>\sigma(x)$;
- a fixed point if $x=\sigma(x)$.

Let cpk σ (resp. cvalley σ, cda σ, $\operatorname{cdd} \sigma$, fix σ) be the number of cyclic peaks (resp. valleys, double excedances, double drops, fixed points) in σ.

For $\sigma \in \mathfrak{S}_{n}$ define the crossing and nesting numbers by

$$
\begin{aligned}
\operatorname{cros}(\sigma) & =\sum_{i=1}^{n} \#\{j \in[n] \mid j<i \leq \sigma(j)<\sigma(i) \text { or } j>i>\sigma(j)>\sigma(i)\}, \\
\operatorname{nest}(\sigma) & =\sum_{i=1}^{n} \#\{j \in[n] \mid i<j \leq \sigma(j)<\sigma(i) \text { or } i>j>\sigma(j)>\sigma(i)\} .
\end{aligned}
$$

Diagram of $\sigma=93746105812: \operatorname{cros} \sigma=5$ and nest $\sigma=10$.

Derangement analogue

Let \mathfrak{D}_{n} be the set of derangements in \mathfrak{S}_{n}. Consider the derangement analogue of the Eulerian polynomials:

$$
D_{n}(t)=\sum_{\sigma \in \mathfrak{D}_{n}} t^{\mathrm{exc} \sigma}=D_{n, 1} t+D_{n, 2} t^{2}+\cdots+D_{n, n-1} t^{n-1}
$$

Proposition (Shin-Zeng 2012)

Let $b_{n, k}$ be the number of derangements of $[n]$ with k cyclic peaks and without cyclic double descents. Then

$$
D_{n}(t)=\sum_{k=1}^{\lfloor(n-1) / 2\rfloor} b_{n, k} t^{k}(1+t)^{n-2 k}
$$

Derangement polynomials

Define the cpeak polynomials

$$
P_{n}^{\mathrm{cpk}}(t):=\sum_{\pi \in \mathfrak{D}_{n}} t^{\mathrm{cpk} \pi}
$$

Then Shin-Zeng's formula reads

$$
D_{n}(t)=\left(\frac{1+t}{2}\right)^{n} P_{n}^{\mathrm{cpk}}\left(\frac{4 t}{(1+t)^{2}}\right)
$$

Our Theorem

Define the following polynomial

$$
P_{n}^{(\mathrm{cpk}, \mathrm{exc})}(x, t):=\sum_{\pi \in \mathfrak{D}_{n}} x^{\mathrm{cpk} \pi} t^{\mathrm{exc} \pi}
$$

Theorem

For $n \geq 1$, we have

$$
D_{n}(t)=\left(\frac{1+x t}{1+x}\right)^{n} P_{n}^{(\mathrm{cpk}, \mathrm{exc})}\left(\frac{(1+x)^{2} t}{(x+t)(1+x t)}, \frac{x+t}{1+x t}\right)
$$

Our Theorem

Let

$$
\begin{aligned}
D_{n}(q, t) & =\sum_{\pi \in \mathfrak{D}_{n}} q^{\text {nest } \pi} t^{\mathrm{exc} \pi} \\
P_{n}^{(\mathrm{nest}, \mathrm{cpk}, \mathrm{exc})}(x, t) & =\sum_{\pi \in \mathfrak{D}_{n}} q^{\mathrm{nest} \pi} x^{\mathrm{cpk} \pi} t^{\mathrm{exc} \pi} .
\end{aligned}
$$

Theorem

For all positive integers n and for each statistic stat $\in\{$ nest $\}$

$$
\begin{aligned}
& D_{n}(q, t) \\
= & \left(\frac{1+x t}{1+x}\right)^{n} P_{n}^{(\mathrm{nest}, \mathrm{cpk}, \mathrm{exc})}\left(q, \frac{(1+x)^{2} t}{(x+t)(1+x t)}, \frac{x+t}{1+x t}\right) .
\end{aligned}
$$

Two continued fractions of Euler, Rogers

$$
\begin{aligned}
\sum_{n=0}^{\infty}(n+1)!x^{n}= & \frac{1}{1-2 x-\frac{1 \cdot 2 x^{2}}{1-4 x-\frac{2 \cdot 3 x^{2}}{\cdots}}} \\
\sum_{n=0}^{\infty} n!x^{n} & =\frac{1}{1-x-\frac{1^{2} x^{2}}{1-3 x-\frac{2^{2} x^{2}}{\cdots}}}
\end{aligned}
$$

These formulas are related to the moment sequence of the Laguerre polynomials.

Combinatorial version by Flajolet, Françon-Viennot

Consider the following Motzkin path γ :

The weight is $w(\gamma)=a_{0}^{2} a_{1} b_{0}^{2} b_{1} c_{1}^{2} c_{2}$. Denote by \mathfrak{M}_{n} the set of Motzkin paths of length $n \geq 1$. Then

$$
\begin{equation*}
1+\sum_{n \geq 1} \sum_{\gamma \in \mathfrak{M}_{n}} w(\gamma) x^{n}=\frac{1}{1-b_{0} x-\frac{a_{0} c_{1} x^{2}}{1-b_{1} x-\frac{a_{1} c_{2} x^{2}}{\ldots}}} . \tag{3}
\end{equation*}
$$

Laguerre history: $h=\left(\gamma ; p_{1}, \ldots, p_{n}\right)$ with respect to the valuation

$$
a_{k}=k+1, \quad b_{k}=2 k+2 \quad \text { for } \quad k \geq 0 ; \quad c_{k}=k+1 \quad \text { for } \quad k \geq 1
$$

The number of Laguerre histories of length n is $(n+1)$!. Restricted Laguerre history: $h=\left(\gamma ; p_{1}, \ldots, p_{n}\right)$ with respect to the valuation

$$
a_{k}=k+1, \quad b_{k}=2 k+1 \quad \text { for } \quad k \geq 0 ; \quad c_{k}=k \text { for } k \geq 1
$$

The number of Restricted Laguerre histories of length n is $n!$.

Two theorems due to Françon-Viennot, Foata-Zeilberger, Biane

Theorem

There are bijections between \mathfrak{S}_{n+1} and the Laguerre histories of length n.

Theorem

There are Bijections between \mathfrak{S}_{n} and the Restricted Laguerre histories of length n.

Modified Foata-Strehl action

Figure: MFS-actions on 65137428

Let $\hat{\pi}$ be permutation with fixed Peaks and Valleys. Then

$$
\sum_{\pi \in \operatorname{Orb}(\hat{\pi})} t^{\operatorname{des}(\pi)}=t^{\mathrm{pk}(\hat{\pi})}(1+t)^{n-1-2 \mathrm{pk}(\hat{\pi})}
$$

Merci de votre attention

