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The beggining

Uniformly locally square integrable solutions

Infinite energy solutions to the Navier-Stokes equations were
introduced by Lemarié-Rieusset in 1999. This has allowed to show the
existence of local weak solutions for a uniformly locally square
integrable initial data.

Other constructions of infinite-energy solutions for locally uniformly square
integrable initial data were given in 2006 by Basson [1] and in 2007 by
Kikuchi and Seregin [6].
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The beggining

Uniformly locally square integrable solutions

Theorem

Let u0 ∈ L2
uloc with ∇ · u0 = 0 and F ∈ (L2

tL
2
x)uloc((0, 1)× R3). Then

there exist a solution u to

(NS)

∂tu = ∆u− (u · ∇)u−∇p +∇ · F

∇ · u = 0, u(0, .) = u0

on (0,T )× R3 with

T = min(c , c(‖u0‖L2
uloc

+ ‖F‖(L2L2)uloc )−4)

and u ∈ (L∞t L2
x)uloc ∩ (L2

tH
1
x )uloc satisfies
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The beggining

Uniformly locally square integrable solutions

sup
0≤t≤T

sup
x∈R3

(

∫
|x−y |<1

|u(t, y)|2 dy)
1
2 ≤ 2(‖u0‖L2

uloc
+ c‖F‖(L2L2)uloc )

sup
x∈R3

(

∫ T

0

∫
|x−y |<1

|∇u(t, y)|2 dy ds)
1
2 ≤ 2(‖u0‖L2

uloc
+ c‖F‖(L2L2)uloc )

Moreover, u is suitable : u satisfies in D′ the energy inequality

∂t(
|u|2

2
) ≤ ∆(

|u|2

2
)− |∇u|2 −∇ ·

(
(
|u|2

2
+ p)u

)
+ u · (∇ · F)

with ∇p = (Id − P)∇ · (F− u⊗ u).

For every compact subset K, limt→0+

∫
K |u(t, x)− u0(x)|2 dx = 0
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Self-similar solutions

Self-similar solutions

The infinite energy solutions allowed Jia and Sverak [5] to construct in
2014 the self-similar solutions for large smooth data.

Definition

Let u0 ∈ L2
loc(R3). We say that u0 is a self-similar function (SS) if for all

λ > 1, λu0(λx) = u0.
A vector field u ∈ L2

loc([0,+∞)× R3) is SS if for all λ > 1,
λu(λ2t, λx) = u(t, x).
A forcing tensor F ∈ L2

loc([0,+∞)× R3) is SS if for all λ > 1,
λ2F(λ2t, λx) = F(t, x).
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Self-similar solutions

Self-similar solutions

Their result has been extended in 2016 by Lemarié-Rieusset [9] to
solutions for rough locally square integrable data. We remark that an
homogeneous (of degree -1) and locally square integrable data is
automatically uniformly locally L2.

If u0 is self-similar, we have u0(x) = 1
|x |u0( x

|x |). From this equality, we find
that, for λ > 1∫

1<|x |<λ
|u0(x)|2 dx = (λ− 1)

∫
S2

|u0(σ)|2 dσ
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Discretely self-similar solutions

Discretely self-similar solutions

In 2018, Bradshaw and Tsai considered the case of self-similar
solutions to a discrete subgroup of dilations. A locally L2 initial data
is not necessarily uniformly locally L2, therefore their results are not
consequence of constructions described by Lemarié-Rieusset in [8].
What can we do ?

Definition

Let u0 ∈ L2
loc(R3). We say that u0 is a λ-discretely self-similar function

(λ-DSS) if there exists λ > 1 such that λu0(λx) = u0.
A vector field u ∈ L2

loc([0,+∞)× R3) is λ-DSS if there exists λ > 1 such
that λu(λ2t, λx) = u(t, x).
A forcing tensor F ∈ L2

loc([0,+∞)× R3) is λ-DSS if there exists λ > 1
such that λ2F(λ2t, λx) = F(t, x).
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Discretely self-similar solutions

I work with Pierre-Gilles Lémarié-Rieusset to give a new proof of the
results of Chae and Wolf [3] and Bradshaw and Tsai [2] on the existence
of λ-DSS solutions of the Navier–Stokes problem (and of Jia and Šverák
[5] for self-similar solutions).
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How to use the energy controls ?

The procedure to obtain infinite energy solutions

For uniformly locally L2 initial data, the idea is to solve the approximated
Navier-Stokes problem using a point fix theorem, and then to prove that
this approximated solutions satisfy a priory controls uniformly.

There exist C > 0 such that for all 0 < ε < 1

‖uε(t, .)‖2
L2
uloc

+
1

2
supx∈R3

∫ t

0

∫
B(x ,1)

|∇uε|2 ds

≤ ‖u0‖2
L2
uloc

+ C

∫ t

0
‖uε(t, .)‖2

L2
uloc

+ ‖uε(t, .)‖6
L2
uloc

ds

and the initial estimate of existence time permit to iterate the point fix
while the quantity in left side is finite.
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How to use the energy controls ?

The procedure to obtain infinite energy solutions

A Grönwall non linear lemma permit to obtain a uniform existence time
and we have the souhaitable controls to use Rellich-Lions Lemma to
obtain a suite uεn which converges to a solution.

In the case of discretely self-similar initial data u0, we have that
u0 ∈ L2((1 + |x |)−1−εdx), where ε > 0. In this case, if we search solutions
u in L∞t L2((1 + |x |)−1−εdx) and ∇u ∈ L2

tL
2((1 + |x |)−1−εdx) we can not

use directly a Piccard point fix theorem because the bi-linear form∫ t

0
ht−s ∗ ∇ · (u⊗ (v ∗ θε))(x , s)ds

is not continuous.
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How to use the energy controls ?

The procedure to obtain discretely self-similar solutions

To obtain approximated discretely self-similar solutions we need to use a
mollifiers θ√tε to regularize the problem, and even if we use initial data in

L2 the bi-linear form with this mollifier is not continuous.

We obtain the a priori estimates and we construct solutions of the
linearized problem, then we obtain solutions of the approximated problem
by using the Leray-Schauder theorem

We prove the discretely self-similar property by demonstrate a uniqueness
result for the approximated problem

The Rellich–Lions theorem permit to obtain a solution by taking the limit
of a sequence of approximated solutions.
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How to use the energy controls ?

Thank you for your attention !
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Z. Bradshaw and T.P. Tsai, Discretely self-similar solutions to the Navier-Stokes equations with data in L2
loc, to appear

in Analysis and PDE.

D. Chae and J. Wolf, Existence of discretely self-similar solutions to the Navier-Stokes equations for initial value in

L2
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