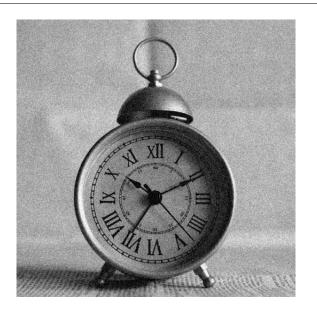
Débruitage d'image par minimisation de la variation totale CMAP, Ecole Polytechnique

Corentin Caillaud, Antonin Chambolle
20 mai 2019, Colloque Inter'Actions 2019, Bordeaux

Débruitage d'image



donnée

Débruitage d'image

résultat

Débruitage par minimisation d'une énergie

$$u^* = \underset{u}{\arg\min} \ \underbrace{\frac{1}{2}||u - u^0||_{L^2}^2}_{\text{fidélité}} + \lambda \underbrace{||\nabla u||}_{\text{régularité}}$$

• u^0 : image bruitée

Débruitage par minimisation d'une énergie

$$u^* = \underset{u}{\operatorname{arg\,min}} \ \underbrace{\frac{1}{2}||u - u^0||_{L^2}^2}_{\text{fidélité}} + \lambda \underbrace{||\nabla u||}_{\text{régularité}}$$

- u^0 : image bruitée
- λ : paramètre de régularisation :

$$\lambda = 0 \longrightarrow u^* = u^0$$
 vs $\lambda = +\infty \longrightarrow u^* = \text{cste}$

Débruitage par minimisation d'une énergie

$$u^* = \underset{u}{\operatorname{arg\,min}} \ \underbrace{\frac{1}{2}||u - u^0||_{L^2}^2}_{\text{fidelité}} + \lambda \underbrace{||\nabla u||}_{\text{régularité}}$$

- u^0 : image bruitée
- λ : paramètre de régularisation :

$$\lambda = 0 \longrightarrow u^* = u^0$$
 vs $\lambda = +\infty \longrightarrow u^* = \text{cste}$

• ||.|| : norme à choisir

Premier essai :
$$||.|| = ||.||_{L^2}^2$$

Problème continu : $u^0 \in L^2([0,1]^2)$

$$u^* = \underset{u \in H^1([0,1]^2)}{\arg\min} \frac{1}{2} ||u - u^0||_{L^2}^2 + \lambda \int_{[0,1]^2} |\nabla u|^2$$

Premier essai :
$$||.|| = ||.||_{L^2}^2$$

Problème continu : $u^0 \in L^2([0,1]^2)$

$$u^* = \underset{u \in H^1([0,1]^2)}{\arg\min} \frac{1}{2} ||u - u^0||_{L^2}^2 + \lambda \int_{[0,1]^2} |\nabla u|^2$$

Problème discret : h = 1/N, $u_h^0 = \text{projection } P0 (= \mathbb{R}^{N \times N})$ de u^0

$$u_h^* = \operatorname*{arg\,min}_{u \in P0} \frac{1}{2} ||u - u_h^0||_2^2 + \lambda \sum_{i,j} |(Du)_{i,j}|^2$$

où D= différences finies usuelles i.e. $(Du)_{i,j}=\begin{pmatrix} u_{i+1,j}-u_{i,j}\\u_{i,j+1}-u_{i,j} \end{pmatrix}$

 $\lambda = 0.05$

 $\lambda = 1$

 $\lambda = 5$

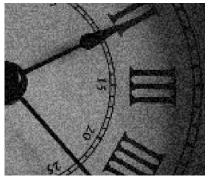
 $\lambda = 10$

 $\lambda = 20$

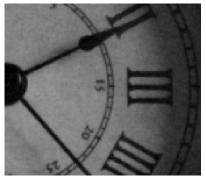
 $\lambda = 80$

on choisit $\lambda = 5$

Ça marche! mais...



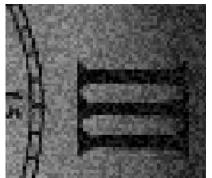
 u^0 : image bruitée

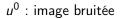


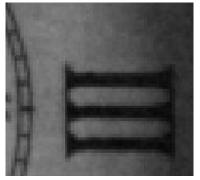
 u_h^* : image débruitée

On voudrait récupérer les "sauts" de l'image.

Ça marche! mais...







 u_h^* : image débruitée

On voudrait récupérer les "sauts" de l'image.

Deuxième essai :
$$||.|| = ||.||_{L^1}$$

$$u^* = \underset{u \in ?}{\arg\min} \frac{1}{2} ||u - u^0||_{L^2}^2 + \lambda \int_{[0,1]^2} |\nabla u|$$

$$u^* = \arg\min_{u \in ?} \frac{1}{2} ||u - u^0||_{L^2}^2 + \lambda \int_{[0,1]^2} |\nabla u|$$

οù

$$\int_{[0,1]^2} |\nabla u| = \int_{[0,1]^2} \sup \left\{ \langle \nabla u | \varphi \rangle, \ \varphi \in \mathcal{C}_c^\infty([0,1]^2,\mathbb{R}^2) \ : \ |\varphi| \leq 1 \right\}$$

$$u^* = \arg\min_{u \in ?} \frac{1}{2} ||u - u^0||_{L^2}^2 + \lambda \int_{[0,1]^2} |\nabla u|$$

οù

$$\begin{split} \int_{[0,1]^2} |\nabla u| &= \int_{[0,1]^2} \sup \left\{ \langle \nabla u | \varphi \rangle, \ \varphi \in \mathcal{C}_c^\infty([0,1]^2,\mathbb{R}^2) \ : \ |\varphi| \leq 1 \right\} \\ &= \sup \left\{ \int_{[0,1]^2} -u \ \operatorname{div} \varphi, \ \varphi \in \mathcal{C}_c^\infty([0,1]^2,\mathbb{R}^2) \ : \ |\varphi| \leq 1 \right\} \end{split}$$

$$u^* = \arg\min_{u \in ?} \frac{1}{2} ||u - u^0||_{L^2}^2 + \lambda \int_{[0,1]^2} |\nabla u|$$

οù

$$\begin{split} \int_{[0,1]^2} |\nabla u| &= \int_{[0,1]^2} \sup \left\{ \langle \nabla u | \varphi \rangle, \ \varphi \in \mathcal{C}_c^\infty([0,1]^2,\mathbb{R}^2) \ : \ |\varphi| \leq 1 \right\} \\ &= \sup \left\{ \int_{[0,1]^2} -u \ \operatorname{div} \varphi, \ \varphi \in \mathcal{C}_c^\infty([0,1]^2,\mathbb{R}^2) \ : \ |\varphi| \leq 1 \right\} \\ &\stackrel{\text{def}}{=} \mathit{TV}(u) \end{split}$$

$$BV \stackrel{\mathsf{def}}{=} \{ u \in L^1 : TV(u) < +\infty \}$$

Modèle de ROF, première discrétisation

Problème continu: (Rudin, Osher et Fatemi, 1992)

$$u^* = \underset{u \in BV \cap L^2}{\arg \min} \frac{1}{2} ||u - u^0||_{L^2}^2 + \lambda TV(u) \stackrel{\text{def}}{=} E(u)$$

où
$$TV(u) = \sup_{|\varphi| \le 1} \int -u \ \operatorname{div} \varphi = \int |\nabla u| \ \operatorname{si} \ u \ \operatorname{régulière}$$

Modèle de ROF, première discrétisation

Problème continu : (Rudin, Osher et Fatemi, 1992)

$$u^* = \underset{u \in BV \cap L^2}{\arg \min} \frac{1}{2} ||u - u^0||_{L^2}^2 + \lambda TV(u) \stackrel{\text{def}}{=} E(u)$$

où
$$TV(u) = \sup_{|\varphi| \le 1} \int -u \ \operatorname{div} \varphi = \int |\nabla u| \ \operatorname{si} \ u \ \operatorname{régulière}$$

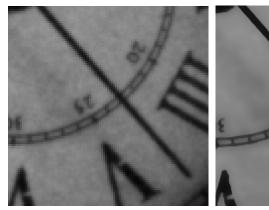
Problème discret :

$$u_h^* = \arg\min_{u \in P0} \frac{1}{2} ||u - u_h^0||_2^2 + \lambda T V_d(u) \stackrel{\text{def}}{=} E_h(u)$$

où
$$TV_d(u) = \sum_{i,j} |(Du)_{i,j}| = \sum_{i,j} \left| \begin{pmatrix} u_{i+1,j} - u_{i,j} \\ u_{i,j+1} - u_{i,j} \end{pmatrix} \right|$$

Ça marche mieux

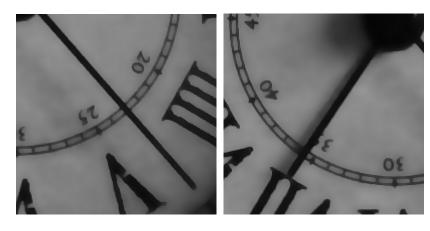
Ça marche mieux



 $u_h^* \text{ pour } ||.||_{L^2}^2$

 u_h^* pour TV_d

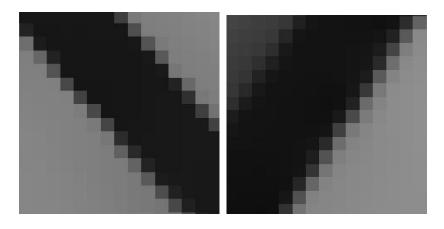
Ça marche mieux, mais...



 u_h^* pour TV_d

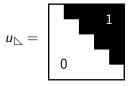
 u_h^* pour TV_d

Ça marche mieux, mais...



 u_h^* pour TV_d

 u_h^* pour TV_d



$$TV_d(u_{\triangleright}) = \sum_{i,j} |(Du_{\triangleright})_{i,j}|$$

$$u_{\triangle} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$TV_d(u_{\triangle}) = \sum_{i,j} |(Du_{\triangle})_{i,j}|$$
$$= \sum_{\bullet} \left| \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right|$$
$$\simeq N\sqrt{2}$$

$$u_{\triangle} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$TV_d(u_{\triangle}) = \sum_{i,j} |(Du_{\triangle})_{i,j}|$$
$$= \sum_{\bullet} \left| \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right|$$
$$\simeq N\sqrt{2}$$

$$u_{\triangle} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

$$TV_d(u_{\triangle}) = \sum_{i,j} |(Du_{\triangle})_{i,j}|$$

$$u_{\triangle} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

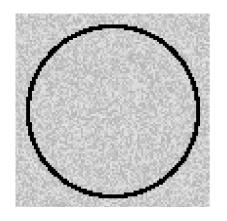
$$TV_d(u_{\triangle}) = \sum_{i,j} |(Du_{\triangle})_{i,j}|$$
$$= \sum_{\bullet} \left| \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right|$$
$$\simeq N\sqrt{2}$$

$$u_{\triangle} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 \end{bmatrix}$$

$$TV_{d}(u_{\Delta}) = \sum_{i,j} |(Du_{\Delta})_{i,j}|$$

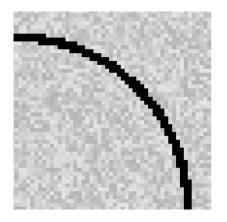
$$= \sum_{\bullet} \left| \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right| \text{ou} \left| \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right|$$

$$\approx 2N$$

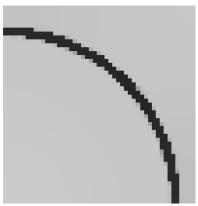


 u^0 : image bruitée

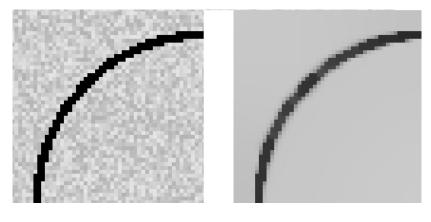
 u_h^* : image débruitée



 u^0 : image bruitée



 u_h^* : image débruitée



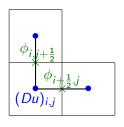
 u^0 : image bruitée

 u_h^* : image débruitée

Une autre variation totale discrète

Dans l'article <u>Discrete Total Variation : New definition and</u> minimization, 2017, Condat remarque :

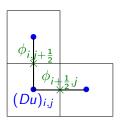
 $|Du|=\sup_{|\phi|\leq 1}\langle Du|\phi\rangle$ pour un champ ϕ localisé sur une grille décalée $(i+\frac{1}{2},j)$ et $(i,j+\frac{1}{2})$.



Une autre variation totale discrète

Dans l'article <u>Discrete Total Variation : New definition and</u> minimization, 2017, Condat remarque :

 $|Du|=\sup_{|\phi|\leq 1}\langle Du|\phi
angle$ pour un champ ϕ localisé sur une grille décalée $(i+\frac{1}{2},j)$ et $(i,j+\frac{1}{2})$.



On propose :
$$\widetilde{TV_d}(u) = \sup\left\{\int -u\operatorname{div}\phi,\ \phi\in P1^2\ :\ |\phi|\leq 1\right\}$$
 où $P1^2 = \{\phi = \begin{pmatrix}\phi_1\\\phi_2\end{pmatrix}\ :\ \phi_1 \text{ et }\phi_2 \text{ affines par morceaux}\}$

Une autre variation totale discrète

$$\begin{split} \widetilde{TV_d}(u) &= \sup \left\{ \int -u \operatorname{div} \phi, \ \phi \in P1^2 \ : \ |\phi| \leq 1 \right\} \\ (\phi_1)_{i,j}(x,y) &= a_{i,j}^1 x + b_{i,j}^1 y + c_{i,j}^1 \qquad (\phi_2)_{i,j}(x,y) = a_{i,j}^2 x + b_{i,j}^2 y + c_{i,j}^2 \end{split}$$

Une autre variation totale discrète

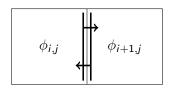
$$\begin{split} \widetilde{TV_d}(u) &= \sup \left\{ \int -u \operatorname{div} \phi, \ \phi \in P1^2 \ : \ |\phi| \leq 1 \right\} \\ (\phi_1)_{i,j}(x,y) &= a_{i,j}^1 x + b_{i,j}^1 y + c_{i,j}^1 \qquad (\phi_2)_{i,j}(x,y) = a_{i,j}^2 x + b_{i,j}^2 y + c_{i,j}^2 \end{split}$$

• Seul div ϕ importe : on peut prendre ϕ_1 constant selon y et ϕ_2 constant selon x : $b_{i,j}^1 = a_{i,j}^2 = 0$

Une autre variation totale discrète

$$\begin{split} \widetilde{TV_d}(u) &= \sup \left\{ \int -u \operatorname{div} \phi, \ \phi \in P1^2 \ : \ |\phi| \leq 1 \right\} \\ (\phi_1)_{i,j}(x,y) &= a_{i,j}^1 x + b_{i,j}^1 y + c_{i,j}^1 \qquad (\phi_2)_{i,j}(x,y) = a_{i,j}^2 x + b_{i,j}^2 y + c_{i,j}^2 \end{split}$$

- Seul div ϕ importe : on peut prendre ϕ_1 constant selon y et ϕ_2 constant selon x : $b_{i,i}^1 = a_{i,i}^2 = 0$
- Pour avoir pour u régulière, $\int -u \operatorname{div} \phi = \int \langle \nabla u | \phi \rangle$, il faut que $\int_{\operatorname{bord}} u \langle \phi | \nu \rangle = 0$: le flux de ϕ à travers une arête est le même de chaque côté : une équation reliant $(a_{i,j}^1, c_{i,j}^1)$ à $(a_{i+1,j}^1, c_{i+1,j}^1)$ et $(b_{i,j}^2, c_{i,j}^2)$ à $(b_{i,j+1}^2, c_{i,j+1}^2)$



Une autre variation totale discrète : champs $RT0_0$

Dans la cellule (i,j):

$$f_1' \begin{bmatrix} f_2' \\ \times \\ (x_c, y_c) f_1 \end{bmatrix} \quad \uparrow h$$

$$f_2$$

$$\phi_f(x,y) = \begin{pmatrix} \frac{f_1 + f_1'}{2} + \frac{f_1' - f_1}{h}(x - x_c) \\ \frac{f_2 + f_2'}{2} + \frac{f_2' - f_2}{h}(y - y_c) \end{pmatrix}$$

Une autre variation totale discrète : champs $RT0_0$

Dans la cellule (i,j):

$$f_1' \begin{bmatrix} f_2' \\ \times \\ (x_c, y_c) f_1 \end{bmatrix} \quad \uparrow h$$

$$\phi_f(x,y) = \begin{pmatrix} \frac{f_1 + f_1'}{2} + \frac{f_1' - f_1}{h}(x - x_c) \\ \frac{f_2 + f_2'}{2} + \frac{f_2' - f_2}{h}(y - y_c) \end{pmatrix}$$

On pose $\widetilde{TV_d}(u) = \sup \left\{ -\int u \operatorname{div} \phi, \ \phi \in RTO_0 : |\phi| \le 1 \right\}$ où $RTO_0 = \{\phi_f, \ f_e \in \mathbb{R}, \ e \text{ arête interne} \}$

Modèle de ROF, deuxième discrétisation

Problème discret numéro 1 :

$$u_h^* = \operatorname*{arg\,min}_{u \in P0} rac{1}{2} ||u - u_h^0||_2^2 + \lambda T V_d(u) \stackrel{\mathsf{def}}{=} E_h(u)$$

où
$$TV_d(u) = \sum_{i,j} |(Du)_{i,j}| = \sum_{i,j} \left| \begin{pmatrix} u_{i+1,j} - u_{i,j} \\ u_{i,j+1} - u_{i,j} \end{pmatrix} \right|$$

Modèle de ROF, deuxième discrétisation

Problème discret numéro 1 :

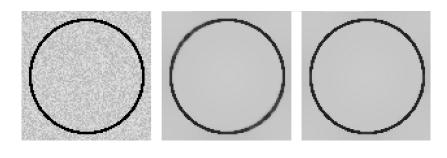
$$u_h^* = \operatorname*{arg\,min}_{u \in P0} rac{1}{2} ||u - u_h^0||_2^2 + \lambda T V_d(u) \stackrel{\mathsf{def}}{=} E_h(u)$$

où
$$TV_d(u) = \sum_{i,j} |(Du)_{i,j}| = \sum_{i,j} \left| \begin{pmatrix} u_{i+1,j} - u_{i,j} \\ u_{i,j+1} - u_{i,j} \end{pmatrix} \right|$$

Problème discret numéro 2 :

$$\widetilde{u}_h^* = \operatorname*{arg\,min}_{u \in P0} \frac{1}{2} ||u - u_h^0||_2^2 + \lambda \, \widetilde{TV_d}(u) \ \stackrel{\text{def}}{=} \widetilde{E}_h(u)$$

où
$$\widetilde{TV_d}(u) = \sup \{-\int u \operatorname{div} \phi, \ \phi \in RTO_0 : |\phi| \le 1\}$$

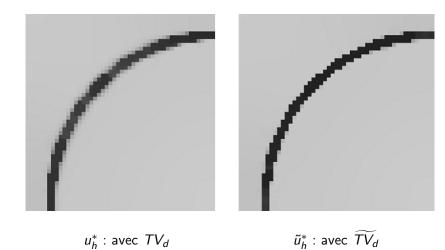


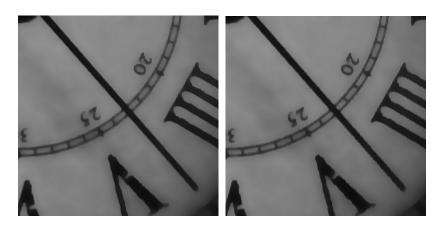
 u^0 : image bruitée u_h^* : avec TV_d

 \widetilde{u}_h^* : avec $\widetilde{TV_d}$

 u_h^* : avec TV_d

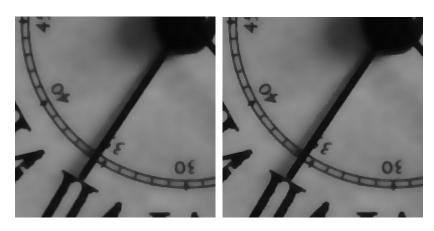
 \widetilde{u}_h^* : avec $\widetilde{TV_d}$





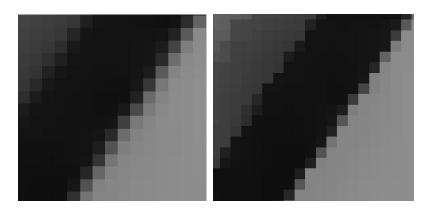
 u_h^* : avec TV_d

 \widetilde{u}_h^* : avec $\widetilde{TV_d}$



 u_h^* : avec TV_d

 \widetilde{u}_h^* : avec $\widetilde{TV_d}$



 u_h^* : avec TV_d

 \widetilde{u}_h^* : avec $\widetilde{TV_d}$

\overline{TV}_d est "meilleure" que \overline{TV}_d

Pb continu : $u^* = \arg\min_{u \in BV} \frac{1}{2} ||u - u^0||_{L^2}^2 + \lambda TV(u) \stackrel{\text{def}}{=} E(u)$

Pb discret 1: $u_h^* = \arg\min_{u \in P0} \frac{1}{2} ||u - u_h^0||_2^2 + \lambda T V_d(u) \stackrel{\text{def}}{=} E_h(u)$

Pb discret 2 : $\widetilde{u}_h^* = \arg\min_{u \in P0} \frac{1}{2} ||u - u_h^0||_2^2 + \lambda \widetilde{TV_d}(u) \stackrel{\text{def}}{=} \widetilde{E}_h(u)$

\widetilde{TV}_d est "meilleure" que TV_d

Pb continu : $u^* = \arg\min_{u \in BV} \frac{1}{2} ||u - u^0||_{L^2}^2 + \lambda TV(u) \stackrel{\text{def}}{=} E(u)$ Pb discret 1 : $u_h^* = \arg\min_{u \in P0} \frac{1}{2} ||u - u_h^0||_2^2 + \lambda TV_d(u) \stackrel{\text{def}}{=} E_h(u)$ Pb discret 2 : $\widetilde{u}_h^* = \arg\min_{u \in P0} \frac{1}{2} ||u - u_h^0||_2^2 + \lambda \widetilde{TV}_d(u) \stackrel{\text{def}}{=} \widetilde{E}_h(u)$

Théorème:

1. Si u^0 est tel que la solution du problème dual du problème continu est globalement lipschitzienne, alors :

$$\exists c > 0, \ \forall h > 0, \ |E(u^*) - \widetilde{E}_h(\widetilde{u}_h^*)| \leq ch$$

2. Il existe un u^0 tel que :

$$\exists c > 0, \ \forall h > 0, \ |E(u^*) - E_h(u_h^*)| \ge ch^{2/3}$$

Eléments de preuve

2. Essentiellement, on prend $u^0 = u_{\triangle} = \begin{bmatrix} 1 & 1 & 1 \\ & & 1 & 1 \end{bmatrix}$

Eléments de preuve

2. Essentiellement, on prend $u^0 = u_{\triangle} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$

En utilisant les symétries de u^0 , on se ramène à un problème 1D :

$$E_h(u_h^*) = \frac{1}{\sqrt{2}} \left(\min_{u} \lambda \sum_{l=-2N}^{2N} \sqrt{(u_{l+1} - u_l)^2 + (u_l - u_{l-1})^2} + \frac{h}{2} \sum_{l=-2N}^{2N} (u_l - u_l^0)^2 \right)$$

où
$$u_1^0 = \delta_{l>0}$$
 (et $u_0^0 = 1/2$), et $u_{2N+1} - u_{2N} = u_{-2N} - u_{-2N-1} = 0$

Eléments de preuve

2. Essentiellement, on prend $u^0 = u_{\triangle} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

En utilisant les symétries de u^0 , on se ramène à un problème 1D :

$$E_h(u_h^*) = \frac{1}{\sqrt{2}} \left(\min_{u} \lambda \sum_{l=-2N}^{2N} \sqrt{(u_{l+1} - u_l)^2 + (u_l - u_{l-1})^2} + \frac{h}{2} \sum_{l=-2N}^{2N} (u_l - u_l^0)^2 \right)$$

où
$$u_I^0 = \delta_{I>0}$$
 (et $u_0^0 = 1/2$), et $u_{2N+1} - u_{2N} = u_{-2N} - u_{-2N-1} = 0$

Après un changement de variable et un passage au problème dual on montre que

$$h^{-2/3}|E_h(u_h^*) - E(u^*)| \xrightarrow[h \to 0]{} \max_{\sigma(0) = \rho(0) = 0} \frac{1}{2}\rho'(0) - \frac{\lambda}{2} \int_0^\infty |2\sigma' + \rho''|^2 > 0$$

d'où le résultat.

1. a. Estimation primale:

$$\widetilde{TV_d}(\Pi_{P0}u^*) = \sup_{\substack{\phi \in RTO_0 \\ |\phi| < 1}} \int -\Pi_{P0}u^* \operatorname{div} \phi$$

1. a. Estimation primale:

$$\widetilde{TV_d}(\Pi_{P0}u^*) = \sup_{\substack{\phi \in RT0_0 \\ |\phi| \le 1}} \int -\Pi_{P0}u^* \operatorname{div} \phi$$
$$= \sup_{\substack{\phi \in RT0_0 \\ |\phi| < 1}} \int -u^* \operatorname{div} \phi$$

1. a. Estimation primale:

$$\begin{split} \widetilde{TV_d}(\Pi_{P0}u^*) &= \sup_{\substack{\phi \in RTO_0 \\ |\phi| \le 1}} \int -\Pi_{P0}u^* \operatorname{div} \phi \\ &= \sup_{\substack{\phi \in RTO_0 \\ |\phi| \le 1}} \int -u^* \operatorname{div} \phi \\ &\le \sup_{\varphi, |\varphi| \le 1} \int -u^* \operatorname{div} \varphi = TV(u^*) \end{split}$$

Ainsi $TV_d(\Pi_{P0}u^*) \leq TV(u^*)$.

1. a. Estimation primale :

$$\begin{split} \widetilde{TV_d}(\Pi_{P0}u^*) &= \sup_{\substack{\phi \in RTO_0 \\ |\phi| \le 1}} \int -\Pi_{P0}u^* \operatorname{div} \phi \\ &= \sup_{\substack{\phi \in RTO_0 \\ |\phi| \le 1}} \int -u^* \operatorname{div} \phi \\ &\leq \sup_{\varphi, |\varphi| \le 1} \int -u^* \operatorname{div} \varphi = TV(u^*) \end{split}$$

Ainsi
$$\widetilde{TV}_d(\Pi_{P0}u^*) \leq TV(u^*)$$
.

De plus
$$||\Pi_{P0}u^* - u_h^0||_2^2 = ||\Pi_{P0}(u^* - u^0)||_2^2 \stackrel{\text{Jensen}}{\leq} ||(u^* - u^0)||_2^2$$

1. a. Estimation primale:

$$\widetilde{TV_d}(\Pi_{P0}u^*) = \sup_{\substack{\phi \in RTO_0 \\ |\phi| \le 1}} \int -\Pi_{P0}u^* \operatorname{div} \phi$$

$$= \sup_{\substack{\phi \in RTO_0 \\ |\phi| \le 1}} \int -u^* \operatorname{div} \phi$$

$$\leq \sup_{\substack{\phi \in RTO_0 \\ |\phi| \le 1}} \int -u^* \operatorname{div} \varphi = TV(u^*)$$

Ainsi
$$TV_d(\Pi_{P0}u^*) \leq TV(u^*)$$
.

De plus
$$||\Pi_{P0}u^* - u_h^0||_2^2 = ||\Pi_{P0}(u^* - u^0)||_2^2 \stackrel{\text{Jensen}}{\leq} ||(u^* - u^0)||_2^2$$

Finalement,
$$\widetilde{E}_h(\widetilde{u}_h^*) \leq \widetilde{E}_h(\Pi_{P0}u^*) \leq E(u^*)$$
.

1. b. Estimation duale : Les problèmes duaux sont : Problème continu :

$$\left(\min_{u \in BV} E(u) = \frac{1}{2} ||u - u^0||_{L^2}^2 + \lambda TV(u) \right)$$

$$= \left(\max_{|\varphi| \le 1} D(\varphi) = -\lambda \int u^0 \operatorname{div} \varphi - \frac{\lambda^2}{2} ||\operatorname{div} \varphi||_{L^2}^2 \right)$$

Avec à l'optimum, $E(u^*) = D(\varphi^*)$ et $u^* = u^0 + \lambda \operatorname{div} \varphi^*$.

1. b. Estimation duale : Les problèmes duaux sont : Problème continu :

$$\left(\min_{u \in BV} E(u) = \frac{1}{2}||u - u^0||_{L^2}^2 + \lambda TV(u)\right)$$

$$= \left(\max_{|\omega| \le 1} D(\varphi) = -\lambda \int u^0 \operatorname{div} \varphi - \frac{\lambda^2}{2}||\operatorname{div} \varphi||_{L^2}^2\right)$$

Avec à l'optimum, $E(u^*) = D(\varphi^*)$ et $u^* = u^0 + \lambda \operatorname{div} \varphi^*$.

Problème discret :

$$\left(\min_{u \in P0} \widetilde{E}_h(u) = \frac{1}{2}||u - u_h^0||_2^2 + \lambda TV_d(u)\right)
= \left(\max_{\phi \in RT0_0, |\phi| \le 1} \widetilde{D}_h(\phi) = -\lambda \int u_h^0 \operatorname{div} \phi - \frac{\lambda^2}{2}||\operatorname{div} \phi||_2^2\right)$$

Avec à l'optimum, $\widetilde{E}_h(\widetilde{u}_h^*) = \widetilde{D}_h(\phi^*)$ et $\widetilde{u}_h^* = u_h^0 + \lambda \operatorname{div} \phi^*$.

On suppose que φ^* est L-lipschitzienne.

Alors sa projection $\phi_* = \prod_{RTO_0} \varphi^*$ vérifie : $|\phi_*| \le 1 + \frac{\sqrt{2}}{2} Lh$.

On suppose que φ^* est L-lipschitzienne.

Alors sa projection $\phi_* = \Pi_{RT0_0} \varphi^*$ vérifie : $|\phi_*| \le 1 + \frac{\sqrt{2}}{2} Lh$. On a donc

$$\widetilde{D_h}\left(rac{1}{1+rac{\sqrt{2}}{2}Lh}\phi_*
ight)\leq \widetilde{D_h}(\phi^*)=\widetilde{E_h}(\widetilde{u}_h^*)$$

On suppose que φ^* est L-lipschitzienne.

Alors sa projection $\phi_* = \Pi_{RT0_0} \varphi^*$ vérifie : $|\phi_*| \le 1 + \frac{\sqrt{2}}{2} Lh$. On a donc

$$\widetilde{D_h}\left(rac{1}{1+rac{\sqrt{2}}{2}Lh}\phi_*
ight)\leq \widetilde{D_h}(\phi^*)=\widetilde{E_h}(\widetilde{u}_h^*)$$

Par ailleurs on montre que

$$\widetilde{D_h}\left(rac{1}{1+rac{\sqrt{2}}{2}Lh}\phi_*
ight)\geq rac{1}{1+ch}\widetilde{D_h}(\phi_*)$$

On suppose que φ^* est L-lipschitzienne.

Alors sa projection $\phi_* = \Pi_{RT0_0} \varphi^*$ vérifie : $|\phi_*| \le 1 + \frac{\sqrt{2}}{2} Lh$. On a donc

$$\widetilde{D_h}\left(rac{1}{1+rac{\sqrt{2}}{2}Lh}\phi_*
ight)\leq \widetilde{D_h}(\phi^*)=\widetilde{E_h}(\widetilde{u}_h^*)$$

Par ailleurs on montre que

$$\widetilde{D_h}\left(rac{1}{1+rac{\sqrt{2}}{2}Lh}\phi_*
ight)\geq rac{1}{1+ch}\widetilde{D_h}(\phi_*)$$

Et en utilisant div $\phi_* = \Pi_{P0} (\text{div } \varphi^*)$ et Jensen :

$$\widetilde{D_h}(\phi_*) \geq D(\varphi^*) - ch = E(u^*) - ch$$

On suppose que φ^* est L-lipschitzienne.

Alors sa projection $\phi_* = \Pi_{RT0_0} \varphi^*$ vérifie : $|\phi_*| \leq 1 + \frac{\sqrt{2}}{2} Lh$. On a donc

$$\widetilde{D_h}\left(rac{1}{1+rac{\sqrt{2}}{2}Lh}\phi_*
ight)\leq \widetilde{D_h}(\phi^*)=\widetilde{E_h}(\widetilde{u}_h^*)$$

Par ailleurs on montre que

$$\widetilde{D_h}\left(rac{1}{1+rac{\sqrt{2}}{2}Lh}\phi_*
ight)\geq rac{1}{1+ch}\widetilde{D_h}(\phi_*)$$

Et en utilisant div $\phi_* = \Pi_{P0} (\text{div } \varphi^*)$ et Jensen :

$$\widetilde{D}_h(\phi_*) > D(\varphi^*) - ch = E(u^*) - ch$$

Finalement, $E(u^*) < (1+ch)\widetilde{E_h}(\tilde{u}_h^*) + ch$.

Finalement,

- a. Estimation primale : $\widetilde{E}_h(\widetilde{u}_h^*) \leq E(u^*)$.
- b. Estimation duale : $E(u^*) \leq (1 + ch)\widetilde{E_h}(\tilde{u}_h^*) + ch$.

Finalement,

- a. Estimation primale : $\widetilde{E}_h(\widetilde{u}_h^*) \leq E(u^*)$.
- b. Estimation duale : $E(u^*) \leq (1 + ch)\widetilde{E_h}(\tilde{u}_h^*) + ch$.

Donc

$$|E(u^*) - \widetilde{E_h}(\widetilde{u}_h^*)| \le ch\widetilde{E_h}(\widetilde{u}_h^*) + ch$$

Finalement,

- a. Estimation primale : $\widetilde{E}_h(\widetilde{u}_h^*) \leq E(u^*)$.
- b. Estimation duale : $E(u^*) \leq (1 + ch)\widetilde{E_h}(\tilde{u}_h^*) + ch$.

Donc

$$|E(u^*) - \widetilde{E_h}(\widetilde{u}_h^*)| \le ch\widetilde{E_h}(\widetilde{u}_h^*) + ch$$

 $\le chE(u^*) + ch$

Finalement,

- a. Estimation primale : $\widetilde{E}_h(\widetilde{u}_h^*) \leq E(u^*)$.
- b. Estimation duale : $E(u^*) \leq (1 + ch)\widetilde{E_h}(\tilde{u}_h^*) + ch$.

Donc

$$|E(u^*) - \widetilde{E_h}(\widetilde{u}_h^*)| \le ch\widetilde{E_h}(\widetilde{u}_h^*) + ch$$

 $\le chE(u^*) + ch$
 $\le Ch$

Finalement,

- a. Estimation primale : $\widetilde{E}_h(\widetilde{u}_h^*) \leq E(u^*)$.
- b. Estimation duale : $E(u^*) \leq (1 + ch)\widetilde{E_h}(\tilde{u}_h^*) + ch$.

Donc

$$|E(u^*) - \widetilde{E_h}(\widetilde{u}_h^*)| \le ch\widetilde{E_h}(\widetilde{u}_h^*) + ch$$

 $\le chE(u^*) + ch$
 $\le Ch$

(En exploitant la forte convexité, on a : $||\tilde{u}_h^* - \Pi_{P0}u^*||_2 \leq C\sqrt{h}$.)

En résumé :

• débruitage par minimisation d'une énergie impliquant $||u-u^0||$ (fidélité) et $||\nabla u||$ (régulariseur, par exemple TV)

En résumé :

- débruitage par minimisation d'une énergie impliquant $||u u^0||$ (fidélité) et $||\nabla u||$ (régulariseur, par exemple TV)
- différentes discrétisations de TV sont possibles, certaines sont plus isotropes que d'autres

En résumé :

- débruitage par minimisation d'une énergie impliquant $||u u^0||$ (fidélité) et $||\nabla u||$ (régulariseur, par exemple TV)
- différentes discrétisations de TV sont possibles, certaines sont plus isotropes que d'autres
- savoir relier TV(u) à $TV_d(\Pi u)$ est utile pour des estimations d'erreur

En résumé :

- débruitage par minimisation d'une énergie impliquant $||u u^0||$ (fidélité) et $||\nabla u||$ (régulariseur, par exemple TV)
- différentes discrétisations de TV sont possibles, certaines sont plus isotropes que d'autres
- savoir relier TV(u) à $TV_d(\Pi u)$ est utile pour des estimations d'erreur

Travail futur:

 des estimations d'erreurs pour d'autres variations totales (type Condat)

