Raking-Ratio empirical process

Mickael Albertus
Supervisor: Philippe Berthet

IMT - ESP
May 14, 2019

Introduction

Notation

Let :

- X_{1}, \ldots, X_{n} i.i.d. with unknown law P on a measurable space $(\mathcal{X}, \mathcal{A})$;

Notation

Let :

- X_{1}, \ldots, X_{n} i.i.d. with unknown law P on a measurable space $(\mathcal{X}, \mathcal{A})$;
- $\mathcal{A}^{(N)}=\left\{A_{1}^{(N)}, \ldots, A_{m_{N}}^{(N)}\right\}$ a partition of \mathcal{X} s.t. we know $P\left(A_{i}^{(N)}\right)$;

Notation

Let :

- X_{1}, \ldots, X_{n} i.i.d. with unknown law P on a measurable space $(\mathcal{X}, \mathcal{A})$;
- $\mathcal{A}^{(N)}=\left\{A_{1}^{(N)}, \ldots, A_{m_{N}}^{(N)}\right\}$ a partition of \mathcal{X} s.t. we know $P\left(A_{i}^{(N)}\right)$;
- $\mathbb{P}_{n}(f)=\frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right)$ the empirical measure indexed by \mathcal{F};

Notation

Let :

- X_{1}, \ldots, X_{n} i.i.d. with unknown law P on a measurable space $(\mathcal{X}, \mathcal{A})$;
- $\mathcal{A}^{(N)}=\left\{A_{1}^{(N)}, \ldots, A_{m_{N}}^{(N)}\right\}$ a partition of \mathcal{X} s.t. we know $P\left(A_{i}^{(N)}\right)$;
- $\mathbb{P}_{n}(f)=\frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right)$ the empirical measure indexed by \mathcal{F};
- $\alpha_{n}(f)=\sqrt{n}\left(\mathbb{P}_{n}(f)-P(f)\right)$ the empirical process indexed by \mathcal{F}.

Notation

Let :

- X_{1}, \ldots, X_{n} i.i.d. with unknown law P on a measurable space $(\mathcal{X}, \mathcal{A})$;
- $\mathcal{A}^{(N)}=\left\{A_{1}^{(N)}, \ldots, A_{m_{N}}^{(N)}\right\}$ a partition of \mathcal{X} s.t. we know $P\left(A_{i}^{(N)}\right)$;
- $\mathbb{P}_{n}(f)=\frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right)$ the empirical measure indexed by \mathcal{F};
- $\alpha_{n}(f)=\sqrt{n}\left(\mathbb{P}_{n}(f)-P(f)\right)$ the empirical process indexed by \mathcal{F}.

If \mathcal{F} is a Donsker class, $\alpha_{n} \xrightarrow[n \rightarrow+\infty]{\mathcal{L}} \mathbb{G}$ in $l^{\infty}(\mathcal{F})$ where \mathbb{G} is the P-brownian bridge, i.e the Gaussian process with covariance

$$
\operatorname{Cov}(\mathbb{G}(f), \mathbb{G}(g))=P(f g)-P(f) P(g) .
$$

1. Raking-ratio method

Plan

1. Raking-ratio method
2. Extension 1: re-sampling method with auxiliary information

Plan

1. Raking-ratio method
2. Extension 1: re-sampling method with auxiliary information
3. Extension 2: auxiliary information learning

Raking-ratio method

Example of the Raking-Ratio method

Literature: Deming/Stephan, Sinkhorn, Ireland/Kullback. Description:

	$A_{1}^{(2)}$	$A_{2}^{(2)}$	$A_{3}^{(2)}$	$\mathbb{P}_{n}\left[\mathcal{A}^{(1)}\right]$	$P\left[\mathcal{A}^{(1)}\right]$
$A_{1}^{(1)}$	0.2	0.25	0.1	0.55	0.52
$A_{2}^{(1)}$	0.1	0.2	0.15	0.45	0.48
$\mathbb{P}_{n}\left[\mathcal{A}^{(2)}\right]$	0.3	0.45	0.25	1	
$P\left[\mathcal{A}^{(1)}\right]$	0.31	0.4	0.29		

We have a table of frequencies whose margins do not correspond to known margins. The algorithm proposes to correct this

Example of the Raking-Ratio method

	$A_{1}^{(2)}$	$A_{2}^{(2)}$	$A_{3}^{(2)}$	$\mathbb{P}_{n}^{(1)}\left[\mathcal{A}^{(1)}\right]$	$P\left[\mathcal{A}^{(1)}\right]$
$A_{1}^{(1)}$	0.189	0.236	0.095	0.52	0.52
$A_{2}^{(1)}$	0.11	0.21	0.16	0.48	0.48
$\mathbb{P}_{n}^{(1)}\left[\mathcal{A}^{(2)}\right]$	0.299	0.446	0.255	1	
$P\left[\mathcal{A}^{(2)}\right]$	0.31	0.4	0.29		

The totals for each line are first corrected by applying a rule of three. Each cell is multiplied by the ratio of the expected total of each line on the total of each line.

Example of the Raking-Ratio method

	$A_{1}^{(2)}$	$A_{2}^{(2)}$	$A_{3}^{(2)}$	$\mathbb{P}_{n}^{(2)}\left[\mathcal{A}^{(1)}\right]$	$P\left[\mathcal{A}^{(1)}\right]$
$A_{1}^{(1)}$	0.196	0.212	0.108	0.516	0.52
$A_{2}^{(1)}$	0.114	0.188	0.182	0.484	0.48
$\mathbb{P}_{n}^{(2)}\left[\mathcal{A}^{(2)}\right]$	0.31	0.4	0.29	1	
$P\left[\mathcal{A}^{(2)}\right]$	0.31	0.4	0.29		

The same reasoning is applied to correct the totals for each column. These last two operations are repeated in a loop.

Example of the Raking-Ratio method

	$A_{1}^{(2)}$	$A_{2}^{(2)}$	$A_{3}^{(2)}$	$\mathbb{P}_{n}^{(\infty)}\left[\mathcal{A}^{(1)}\right]$	$P\left[\mathcal{A}^{(1)}\right]$
$A_{1}^{(1)}$	0.199	0.212	0.109	0.52	0.52
$A_{2}^{(1)}$	0.111	0.188	0.181	0.48	0.48
$\mathbb{P}_{n}^{(\infty)}\left[\mathcal{A}^{(2)}\right]$	0.31	0.4	0.29	1	
$P\left[\mathcal{A}^{(2)}\right]$	0.31	0.4	0.29		

Very quickly the algorithm stabilizes. Totals are the expected totals. For this example it took only 7 iterations.

Remark: we can rake on more than two partitions!

Notation of Raking-Ratio method

In turn N the algorithm does:

$$
p^{(N+1)}(A)=\sum_{j=1}^{m_{N+1}} p^{(N)}\left(A \cap A_{j}^{(N+1)}\right) \frac{P\left(A_{j}^{(N+1)}\right)}{p^{(N)}\left(A_{j}^{(N+1)}\right)} .
$$

Notation of Raking-Ratio method

In turn N the algorithm does:

$$
p^{(N+1)}(A)=\sum_{j=1}^{m_{N+1}} p^{(N)}\left(A \cap A_{j}^{(N+1)}\right) \frac{P\left(A_{j}^{(N+1)}\right)}{p^{(N)}\left(A_{j}^{(N+1)}\right)} .
$$

We define the raked empirical measure $\mathbb{P}_{n}^{(N)}$ to be $\mathbb{P}_{n}^{(0)}=\mathbb{P}_{n}$ and

$$
\mathbb{P}_{n}^{(N+1)}(f)=\sum_{j=1}^{m_{N+1}} \mathbb{P}_{n}^{(N)}\left(f 1_{A_{j}^{(N+1)}}\right) \frac{P\left(A_{j}^{(N+1)}\right)}{\mathbb{P}_{n}^{(N)}\left(A_{j}^{(N+1)}\right)} .
$$

In particular, $\mathbb{P}_{n}^{(N+1)}\left(A_{j}^{(N+1)}\right)=P\left(A_{j}^{(N+1)}\right), \forall j=1, \ldots, m_{N+1}$.

Notation of Raking-Ratio method

Let $\alpha_{n}^{(N)}(f)=\sqrt{n}\left(\mathbb{P}_{n}^{(N)}(f)-P(f)\right)$ the raked empirical process.
$\alpha_{n}^{(N+1)}(f)=\sum_{j \leqslant m_{N+1}} \frac{P\left(A_{j}^{(N+1)}\right)}{\mathbb{P}_{n}^{(N)}\left(A_{j}^{(N+1)}\right)}\left(\alpha_{n}^{(N)}\left(f 1_{A_{j}^{(N+1)}}\right)-\mathbb{E}\left[f \mid A_{j}^{(N+1)}\right] \alpha_{n}^{(N)}\left(A_{j}^{(N+1)}\right)\right)$
with $\mathbb{E}[f \mid A]=\frac{P\left(f \bigcap_{A}\right)}{P(A)}$.
In particular, $\alpha_{n}^{(N+1)}\left(A_{j}^{(N+1)}\right)=0, \quad \forall j=1, \ldots, m_{N+1}$.
Remark: $\mathbb{E}\left[\alpha_{n}^{(N)}(f)\right] \neq 0 \Rightarrow \alpha_{n}^{(N)}$ is no more centered.

Raking-Ratio method

Goals

- Weak convergence in $\ell^{\infty}(\mathcal{F})$ of $\alpha_{n}^{(N)}(\mathcal{F})$ when $n \rightarrow+\infty$ towards a centered Gaussian process $\mathbb{G}^{(N)}(\mathcal{F})$;

Raking-Ratio method

Goals

- Weak convergence in $\ell^{\infty}(\mathcal{F})$ of $\alpha_{n}^{(N)}(\mathcal{F})$ when $n \rightarrow+\infty$ towards a centered Gaussian process $\mathbb{G}^{(N)}(\mathcal{F})$;
- Variance of $\mathbb{G}^{(N)}(f)$: is it lower than that of \mathbb{G} ? If a loop is performed with the Raking-Ratio method, does the variance decrease with each loop turn?

Raking-Ratio method

Goals

- Weak convergence in $\ell^{\infty}(\mathcal{F})$ of $\alpha_{n}^{(N)}(\mathcal{F})$ when $n \rightarrow+\infty$ towards a centered Gaussian process $\mathbb{G}^{(N)}(\mathcal{F})$;
- Variance of $\mathbb{G}^{(N)}(f)$: is it lower than that of \mathbb{G} ? If a loop is performed with the Raking-Ratio method, does the variance decrease with each loop turn?
- If we rake only two partitions, what's the limit of $\alpha_{n}^{(N)}(\mathcal{F})$ as $n, N \rightarrow+\infty$?

Main result

Weak convergence of $\alpha_{n}^{(N)}$
Under some entropy conditions on \mathcal{F},

$$
\left(\alpha_{n}^{(0)}, \ldots, \alpha_{n}^{\left(N_{0}\right)}\right) \underset{n \rightarrow+\infty}{\mathcal{L}}\left(\mathbb{G}^{(0)}, \ldots, \mathbb{G}^{\left(N_{0}\right)}\right) \quad \text { in } \quad \ell^{\infty}\left(\mathcal{F}^{N_{0}} \rightarrow \mathbb{R}^{N_{0}}\right)
$$

with $\mathbb{G}^{(N)}$ the Gaussian process defined by

$$
\mathbb{G}^{(0)}=\mathbb{G} \quad \text { and } \quad \mathbb{G}^{(N+1)}(f)=\mathbb{G}^{(N)}(f)-\sum_{j=1}^{m_{N+1}} \mathbb{E}\left[f \mid A_{j}^{(N+1)}\right] \mathbb{G}^{(N)}\left(A_{j}^{(N+1)}\right)
$$

Main result

Weak convergence of $\alpha_{n}^{(N)}$
Under some entropy conditions on \mathcal{F},

$$
\left(\alpha_{n}^{(0)}, \ldots, \alpha_{n}^{\left(N_{0}\right)}\right) \underset{n \rightarrow+\infty}{\mathcal{L}}\left(\mathbb{G}^{(0)}, \ldots, \mathbb{G}^{\left(N_{0}\right)}\right) \quad \text { in } \quad \ell^{\infty}\left(\mathcal{F}^{N_{0}} \rightarrow \mathbb{R}^{N_{0}}\right)
$$

with $\mathbb{G}^{(N)}$ the Gaussian process defined by

$$
\mathbb{G}^{(0)}=\mathbb{G} \text { and } \mathbb{G}^{(N+1)}(f)=\mathbb{G}^{(N)}(f)-\sum_{j=1}^{m_{N+1}} \mathbb{E}\left[f \mid A_{j}^{(N+1)}\right] \mathbb{G}^{(N)}\left(A_{j}^{(N+1)}\right)
$$

Recall that

$$
\alpha_{n}^{(N+1)}(f)=\sum_{j \leqslant m_{N+1}} \frac{P\left(A_{j}^{(N+1)}\right)}{\mathbb{P}_{n}^{(N)}\left(A_{j}^{(N+1)}\right)}\left(\alpha_{n}^{(N)}\left(f 1_{A_{j}^{(N+1)}}\right)-\mathbb{E}\left[f \mid A_{j}^{(N+1)}\right] \alpha_{n}^{(N)}\left(A_{j}^{(N+1)}\right)\right)
$$

Main tool

Idea of strong approximation

Results: KMT, Berthet-Mason.

Main tool

Strong approximation of $\alpha_{n}^{(N)}(\mathcal{F})$

Under some entropy conditions on \mathcal{F} we can construct on the same probability space X_{1}, \ldots, X_{n} and a version $\mathbb{G}_{n}^{(N)}$ of $\mathbb{G}^{(N)}$ such that for large n,

$$
\mathbb{P}\left(\max _{0 \leqslant N \leqslant N_{0}}\left\|\alpha_{n}^{(N)}-\mathbb{G}_{n}^{(N)}\right\|_{\mathcal{F}}>C V_{n}\right) \leqslant \frac{1}{n^{2}},
$$

with $v_{n} \rightarrow 0$.
By Borell-Cantelli,

$$
\max _{0 \leqslant N \leqslant N_{0}}\left\|\alpha_{n}^{(N)}-\mathbb{G}_{n}^{(N)}\right\|_{\mathcal{F}}=O_{\text {a.s. }}\left(v_{n}\right) .
$$

Consequences of strong approximation

Uniform estimation of bias and variance of Raking-Ratio method

 Under some entropy conditions on \mathcal{F}, there exists $C>0$ such that$$
\begin{array}{r}
\limsup _{n \rightarrow+\infty} \frac{\sqrt{n}}{V_{n}} \max _{0 \leqslant N \leqslant N_{0}} \sup _{f \in \mathcal{F}}\left|\mathbb{E}\left[\mathbb{P}_{n}^{(N)}(f)\right]-P(f)\right| \leqslant C, \\
\limsup _{n \rightarrow+\infty} \frac{n}{V_{n}} \sup _{f \in \mathcal{F}}\left|\operatorname{Var}\left(\mathbb{P}_{n}^{(N)}(f)\right)-\frac{1}{n} \operatorname{Var}\left(\mathbb{G}^{(N)}(f)\right)\right| \leqslant C .
\end{array}
$$

Consequences of strong approximation

Uniform estimation of bias and variance of Raking-Ratio method

 Under some entropy conditions on \mathcal{F}, there exists $C>0$ such that$$
\begin{array}{r}
\limsup _{n \rightarrow+\infty} \frac{\sqrt{n}}{V_{n}} \max _{0 \leqslant N \leqslant N_{0}} \sup _{f \in \mathcal{F}}\left|\mathbb{E}\left[\mathbb{P}_{n}^{(N)}(f)\right]-P(f)\right| \leqslant C, \\
\limsup _{n \rightarrow+\infty} \frac{n}{V_{n}} \sup _{f \in \mathcal{F}}\left|\operatorname{Var}\left(\mathbb{P}_{n}^{(N)}(f)\right)-\frac{1}{n} \operatorname{Var}\left(\mathbb{G}^{(N)}(f)\right)\right| \leqslant C .
\end{array}
$$

Uniform Berry-Esseen bound

Under some entropy conditions on \mathcal{F},

$$
\max _{0 \leqslant N \leqslant N_{0}} \sup _{f \in \mathcal{F}} \sup _{x \in \mathbb{R}}\left|\mathbb{P}\left(\alpha_{n}^{(N)}(f) \leqslant x\right)-\mathbb{P}\left(\mathbb{G}^{(N)}(f) \leqslant x\right)\right| \leqslant C v_{n}
$$

Raking-Ratio results

We denote

- $\mathbb{E}\left[f \mid \mathcal{A}^{(k)}\right]=\left(\mathbb{E}\left[f \mid A_{1}^{(k)}\right], \ldots, \mathbb{E}\left[f \mid A_{m_{k}}^{(k)}\right]\right)^{t} ;$
- $\mathbb{G}\left[\mathcal{A}^{(k)}\right]=\left(\mathbb{G}\left(A_{1}^{(k)}\right), \ldots, \mathbb{G}\left(A_{m_{k}}^{(k)}\right)\right)^{t} ;$
- $\left(\mathrm{P}_{\mathcal{A}^{(k)} \mid \mathcal{A}^{(l)}}\right)_{i, j}=P\left(A_{j}^{(k)} \mid A_{i}^{(l)}\right)$.

Expression of $\mathbb{G}^{(N)}$

For all $N \in \mathbb{N}^{*}$ and $f \in \mathcal{F}$ it holds

$$
\mathbb{G}^{(N)}(f)=\mathbb{G}(f)-\sum_{k=1}^{N} \Phi_{k}^{(N)}(f)^{t} \cdot \mathbb{G}\left[\mathcal{A}^{(k)}\right]
$$

where
$\Phi_{k}^{(N)}(f)=\mathbb{E}\left[f \mid \mathcal{A}^{(k)}\right]+\sum_{\substack{1 \leqslant L \leqslant N-k \\ k<l_{1}<\cdots<l_{L} \leqslant N}}(-1)^{L} \mathrm{P}_{\mathcal{A}^{\left(h_{1}\right)} \mid \mathcal{A}^{(k)}} \mathrm{P}_{\mathcal{A}^{(L)} \mid \mathcal{A}^{(h)}} \ldots \mathrm{P}_{\mathcal{A}^{(L)} \mid \mathcal{A}^{\left(L_{L}-1\right)}} \cdot \mathbb{E}\left[f \mid \mathcal{A}^{(L)}\right]$.

Raking-Ratio results

We denote $\left(\operatorname{Var}\left(\left(X_{1}, \ldots, X_{n}\right)^{t}\right)\right)_{i, j}=\operatorname{Cov}\left(X_{i}, X_{j}\right)$

Variance and covariance of $\mathbb{G}^{(N)}$

For all $N \in \mathbb{N}^{*}$ and $f, g \in \mathcal{F}$ it holds

$$
\operatorname{Var}\left(\mathbb{G}^{(N)}(f)\right)=\operatorname{Var}(\mathbb{G}(f))-\sum_{k=1}^{N} \boldsymbol{\Phi}_{k}^{(N)}(f)^{t} \cdot \operatorname{Var}\left(\mathbb{G}\left[\mathcal{A}^{(k)}\right]\right) \cdot \boldsymbol{\Phi}_{k}^{(N)}(f)
$$

$\operatorname{Cov}\left(\mathbb{G}^{(N)}(f), \mathbb{G}^{(N)}(g)\right)=\operatorname{Cov}(\mathbb{G}(f), \mathbb{G}(g))$
$-\sum_{k=1}^{N} \operatorname{Cov}\left(\Phi_{k}^{(N)}(f)^{t} \cdot \mathbb{G}\left[\mathcal{A}^{(k)}\right], \Phi_{k}^{(N)}(g)^{t} \cdot \mathbb{G}\left[\mathcal{A}^{(k)}\right]\right)$

Raking-Ratio results

Corollary 1

For any $N \in \mathbb{N}$ and $f \in \mathcal{F}, \operatorname{Var}\left(\mathbb{G}^{(N)}(f)\right) \leqslant \operatorname{Var}(\mathbb{G}(f))$.
For any $\left\{f_{1}, \ldots, f_{m}\right\} \in \mathcal{F}, \Sigma_{m}-\Sigma_{m}^{(N)}$ is positive definite with

$$
\begin{aligned}
\Sigma_{n}^{(N)} & =\operatorname{Var}\left(\left(\mathbb{G}^{(N)}\left(f_{1}\right), \ldots, \mathbb{G}^{(N)}\left(f_{m}\right)\right)^{t}\right), \\
\Sigma_{n} & =\operatorname{Var}\left(\left(\mathbb{G}\left(f_{1}\right), \ldots, \mathbb{G}\left(f_{m}\right)\right)^{t}\right) .
\end{aligned}
$$

Raking-Ratio results

Corollary 2

Let $N_{0}, N_{1} \in \mathbb{N}$ s.t. $N_{1} \geqslant 2 N_{0}$ and

$$
\mathcal{A}^{\left(N_{0}-i\right)}=\mathcal{A}^{\left(N_{1}-i\right)}, \quad \forall 0 \leqslant i<N_{0} .
$$

Then for all $f \in \mathcal{F}, \operatorname{Var}\left(\mathbb{G}^{\left(N_{1}\right)}(f)\right) \leqslant \operatorname{Var}\left(\mathbb{G}^{\left(N_{0}\right)}(f)\right)$.

Results for 2 margins

We work with $=\left\{A, A^{C}\right\}, \mathcal{B}=\left\{B, B^{C}\right\}$. We denote
$p_{A}=P(A), \quad p_{\bar{A}}=P\left(A^{C}\right), \quad p_{B}=P(B), \quad p_{\bar{B}}=P\left(B^{C}\right), \quad p_{A B}=P(A \cap B)$.

Calculation of $\operatorname{Var}\left(\mathbb{G}^{(N)}(f)\right)$
For $N=1,2$ we have

$$
\begin{aligned}
\operatorname{Var}\left(\mathbb{G}^{(1)}(f)\right)= & \operatorname{Var}\left(\mathbb{G}^{(0)}(f)\right)-\mathbb{E}[f \mid \mathcal{A}]^{t} \cdot \operatorname{Var}(\mathbb{G}[\mathcal{A}]) \cdot \mathbb{E}[f \mid \mathcal{A}] \\
= & \operatorname{Var}\left(\mathbb{G}^{(0)}(f)\right)-p_{A} p_{\bar{A}}\left(\mathbb{E}[f \mid A]-\mathbb{E}\left[f \mid A^{C}\right]\right)^{2}, \\
\operatorname{Var}\left(\mathbb{G}^{(2)}(f)\right)= & \operatorname{Var}\left(\mathbb{G}^{(0)}(f)\right)-p_{B} p_{\bar{B}}\left(\mathbb{E}[f \mid B]-\mathbb{E}\left[f \mid B^{C}\right]\right)^{2} \\
& -\left(p_{A} p_{\bar{A}}+\frac{p_{B} p_{\bar{B}}\left(p_{A B}-p_{A} p_{B}\right)}{p_{A}^{2} p_{\bar{A}}^{2}}\right)\left(\mathbb{E}[f \mid A]-\mathbb{E}\left[f \mid A^{C}\right]\right)^{2},
\end{aligned}
$$

Results for 2 margins

Calculation of $\operatorname{Var}\left(\mathbb{G}^{(\infty)}(f)\right)$

We denote $\Delta_{A}=\mathbb{E}[f \mid A]-\mathbb{E}[f], \Delta_{B}=\mathbb{E}[f \mid B]-\mathbb{E}[f]$, then
$\operatorname{Var}\left(\mathbb{G}^{(\infty)}(f)\right)=\operatorname{Var}\left(\mathbb{G}^{(0)}(f)\right)$

$$
-\frac{p_{A} p_{B}\left(p_{A} \Delta_{A}^{2}+p_{B} \Delta_{B}^{2}-p_{A} p_{B}\left(\Delta_{A}-\Delta_{B}\right)^{2}-2 p_{A B} \Delta_{A} \Delta_{B}\right)}{p_{A} p_{B} p_{\bar{A}} p_{\bar{B}}-\left(p_{A B}-p_{A} p_{B}\right)^{2}} .
$$

In particular, if $\Delta_{A}=\Delta_{B}=0$ then $\operatorname{Var}\left(\mathbb{G}^{(\infty)}(f)\right)=\operatorname{Var}\left(\mathbb{G}^{(0)}(f)\right)$.
If A is independent of B then

$$
\operatorname{Var}\left(\mathbb{G}^{(\infty)}(f)\right)=\operatorname{Var}\left(\mathbb{G}^{(0)}(f)\right)-\left(\frac{p_{A}}{p_{\bar{A}}} \Delta_{A}^{2}+\frac{p_{B}}{p_{\bar{B}}} \Delta_{B}^{2}\right)
$$

Extension 1: re-sampling method with auxiliary information

Introduction

Notation

Bootstrap is a statistical method for re-sampling. It replaces P by \mathbb{P}_{n}.
A general way to define the bootstrap is to multiply $f\left(X_{i}\right)$ by a random variable Z_{i} such that $\mathbb{E}\left[Z_{i} \mid X_{i}\right]=1$ and $\operatorname{Var}\left(Z_{i}\right)=1$.

Introduction

Notation

Bootstrap is a statistical method for re-sampling. It replaces P by \mathbb{P}_{n}.
A general way to define the bootstrap is to multiply $f\left(X_{i}\right)$ by a random variable Z_{i} such that $\mathbb{E}\left[Z_{i} \mid X_{i}\right]=1$ and $\operatorname{Var}\left(Z_{i}\right)=1$.

We define the bootstrapped empirical measure and process:

$$
\mathbb{P}_{n}^{*}(f)=\frac{1}{\sum_{i=1}^{n} z_{i}} \sum_{i=1}^{n} z_{i} f\left(X_{i}\right), \quad \alpha_{n}^{*}(f)=\sqrt{n}\left(\mathbb{P}_{n}^{*}(f)-\mathbb{P}_{n}(f)\right)
$$

Introduction

Notation

Bootstrap is a statistical method for re-sampling. It replaces P by \mathbb{P}_{n}.
A general way to define the bootstrap is to multiply $f\left(X_{i}\right)$ by a random variable Z_{i} such that $\mathbb{E}\left[Z_{i} \mid X_{i}\right]=1$ and $\operatorname{Var}\left(Z_{i}\right)=1$.

We define the bootstrapped empirical measure and process:

$$
\mathbb{P}_{n}^{*}(f)=\frac{1}{\sum_{i=1}^{n} z_{i}} \sum_{i=1}^{n} z_{i} f\left(X_{i}\right), \quad \alpha_{n}^{*}(f)=\sqrt{n}\left(\mathbb{P}_{n}^{*}(f)-\mathbb{P}_{n}(f)\right) .
$$

Goal

- Make the strong approximation of α_{n}^{*} to \mathbb{G}^{*}, a P-Brownian bridge independent of \mathbb{G};
- Bootstrap the Raking-Ratio empirical process to simulate its distribution.

Strong approximation of the bootstrapped empirical process

Strong approximation of α_{n}^{*}

Under some entropy conditions on \mathcal{F} we can construct on the same probability space $\left(X_{n}, Z_{n}\right)$ and $\left(\mathbb{G}_{n}, \mathbb{G}_{n}^{*}\right)$ of P-Brownian bridge such that for large n,

$$
\mathbb{P}\left(\left\{\left\|\alpha_{n}-\mathbb{G}_{n}\right\|_{\mathcal{F}}>C v_{n}\right\} \bigcup\left\{\left\|\alpha_{n}^{*}-\mathbb{G}_{n}^{*}\right\|_{\mathcal{F}}>C v_{n}\right\}\right) \leqslant \frac{1}{n^{2}}
$$

with $v_{n} \rightarrow 0$ depends on the entropy of (\mathcal{F}, P).

Bootstrap and Raking-Ratio

Goal
How can we adapt the bootstrap method to simulate the distribution of the Raking-Ratio empirical process?

Bootstrap and Raking-Ratio

Goal
How can we adapt the bootstrap method to simulate the distribution of the Raking-Ratio empirical process?
$\mathbb{P}_{n}^{*(0)}=\mathbb{P}_{n}^{*}$

Bootstrap and Raking-Ratio

Goal

How can we adapt the bootstrap method to simulate the distribution of the Raking-Ratio empirical process?
$\mathbb{P}_{n}^{*(0)}=\mathbb{P}_{n}^{*}$ and

$$
\begin{aligned}
\mathbb{P}_{n}^{*(N+1)}(f) & =\sum_{j=1}^{m_{N+1}} \mathbb{P}_{n}^{*(N)}\left(f 1_{A_{j}^{(N+1)}}\right) \frac{\mathbb{P}_{n}\left(A_{j}^{(N+1)}\right)}{\mathbb{P}_{n}^{*(N)}\left(A_{j}^{(N+1)}\right)}, \\
\alpha_{n}^{*(N)}(f) & =\sqrt{n}\left(\mathbb{P}_{n}^{*(N)}(f)-\mathbb{P}_{n}(f)\right) .
\end{aligned}
$$

Bootstrap and Raking-Ratio

Goal
How can we adapt the bootstrap method to simulate the distribution of the Raking-Ratio empirical process?
$\mathbb{P}_{n}^{*(0)}=\mathbb{P}_{n}^{*}$ and

$$
\begin{aligned}
\mathbb{P}_{n}^{*(N+1)}(f) & =\sum_{j=1}^{m_{N+1}} \mathbb{P}_{n}^{*(N)}\left(f 1_{A_{j}^{(N+1)}}\right) \frac{\mathbb{P}_{n}\left(A_{j}^{(N+1)}\right)}{\mathbb{P}_{n}^{*(N)}\left(A_{j}^{(N+1)}\right)}, \\
\alpha_{n}^{*(N)}(f) & =\sqrt{n}\left(\mathbb{P}_{n}^{*(N)}(f)-\mathbb{P}_{n}(f)\right) .
\end{aligned}
$$

Result

$\alpha_{n}^{*(N)} \rightarrow \mathbb{G}^{*(N)}$ in $\ell^{\infty}(\mathcal{F})$ and $\mathbb{G}^{*(N)}$ has the same distribution as $\mathbb{G}^{(N)}$.

Thank you for your attention!

Questions?

