

Raking-Ratio empirical process

Mickael Albertus Supervisor: Philippe Berthet

IMT - ESP May 14, 2019

Let:

• X_1,\ldots,X_n i.i.d. with unknown law P on a measurable space $(\mathcal{X},\mathcal{A})$;

Let:

- X_1, \ldots, X_n i.i.d. with unknown law P on a measurable space $(\mathcal{X}, \mathcal{A})$;
- $\mathcal{A}^{(N)}=\{A_1^{(N)},\dots,A_{m_N}^{(N)}\}$ a partition of \mathcal{X} s.t. we know $P(A_i^{(N)})$;

Let:

- X_1, \ldots, X_n i.i.d. with unknown law P on a measurable space $(\mathcal{X}, \mathcal{A})$;
- $\mathcal{A}^{(N)} = \{A_1^{(N)}, \dots, A_{m_N}^{(N)}\}$ a partition of \mathcal{X} s.t. we know $P(A_i^{(N)})$;
- $\mathbb{P}_n(f) = \frac{1}{n} \sum_{i=1}^n f(X_i)$ the empirical measure indexed by \mathcal{F} ;

Let:

- X_1, \ldots, X_n i.i.d. with unknown law P on a measurable space $(\mathcal{X}, \mathcal{A})$;
- $\mathcal{A}^{(N)}=\{A_1^{(N)},\ldots,A_{m_N}^{(N)}\}$ a partition of \mathcal{X} s.t. we know $P(A_i^{(N)})$;
- $\mathbb{P}_n(f) = \frac{1}{n} \sum_{i=1}^n f(X_i)$ the empirical measure indexed by \mathcal{F} ;
- $\alpha_n(f) = \sqrt{n}(\mathbb{P}_n(f) P(f))$ the empirical process indexed by \mathcal{F} .

Let:

- X_1, \ldots, X_n i.i.d. with unknown law P on a measurable space $(\mathcal{X}, \mathcal{A})$;
- $\mathcal{A}^{(N)}=\{A_1^{(N)},\dots,A_{m_N}^{(N)}\}$ a partition of \mathcal{X} s.t. we know $P(A_i^{(N)})$;
- $\mathbb{P}_n(f) = \frac{1}{n} \sum_{i=1}^n f(X_i)$ the empirical measure indexed by \mathcal{F} ;
- $\alpha_n(f) = \sqrt{n}(\mathbb{P}_n(f) P(f))$ the empirical process indexed by \mathcal{F} .

If \mathcal{F} is a Donsker class, $\alpha_n \xrightarrow[n \to +\infty]{\mathcal{L}} \mathbb{G}$ in $l^{\infty}(\mathcal{F})$ where \mathbb{G} is the P-brownian bridge, <u>i.e.</u> the Gaussian process with covariance

$$\mathrm{Cov}(\mathbb{G}(f),\mathbb{G}(g)) = P(fg) - P(f)P(g).$$

Plan

1. Raking-ratio method

Plan

- 1. Raking-ratio method
- 2. Extension 1: re-sampling method with auxiliary information

Plan

- 1. Raking-ratio method
- 2. Extension 1: re-sampling method with auxiliary information
- 3. Extension 2: auxiliary information learning

Raking-ratio method

Literature: Deming/Stephan, Sinkhorn, Ireland/Kullback.

Description:

	$A_1^{(2)}$	$A_2^{(2)}$	$A_3^{(2)}$	$\mathbb{P}_n[\mathcal{A}^{(1)}]$	$P[\mathcal{A}^{(1)}]$
$A_1^{(1)}$	0.2	0.25	0.1	0.55	0.52
A ₂ ⁽¹⁾	0.1	0.2	0.15	0.45	0.48
$\mathbb{P}_n[\mathcal{A}^{(2)}]$	0.3	0.45	0.25	1	
$P[\mathcal{A}^{(1)}]$	0.31	0.4	0.29		

We have a table of frequencies whose margins do not correspond to known margins. The algorithm proposes to correct this

	$A_1^{(2)}$	$A_2^{(2)}$	$A_3^{(2)}$	$\mathbb{P}_n^{(1)}[\mathcal{A}^{(1)}]$	$P[\mathcal{A}^{(1)}]$
$A_1^{(1)}$	0.189	0.236	0.095	0.52	0.52
$A_2^{(1)}$	0.11	0.21	0.16	0.48	0.48
$\mathbb{P}_n^{(1)}[\mathcal{A}^{(2)}]$	0.299	0.446	0.255	1	
$P[\mathcal{A}^{(2)}]$	0.31	0.4	0.29		

The totals for each line are first corrected by applying a rule of three. Each cell is multiplied by the ratio of the expected total of each line on the total of each line.

	$A_1^{(2)}$	$A_2^{(2)}$	$A_3^{(2)}$	$\mathbb{P}_n^{(2)}[\mathcal{A}^{(1)}]$	$P[\mathcal{A}^{(1)}]$
$A_1^{(1)}$	0.196	0.212	0.108	0.516	0.52
A ₂ ⁽¹⁾	0.114	0.188	0.182	0.484	0.48
$\mathbb{P}_n^{(2)}[\mathcal{A}^{(2)}]$	0.31	0.4	0.29	1	
$P[\mathcal{A}^{(2)}]$	0.31	0.4	0.29		

The same reasoning is applied to correct the totals for each column. These last two operations are repeated in a loop.

	$A_1^{(2)}$	$A_2^{(2)}$	$A_3^{(2)}$	$\mathbb{P}_n^{(\infty)}[\mathcal{A}^{(1)}]$	$P[\mathcal{A}^{(1)}]$
$A_1^{(1)}$	0.199	0.212	0.109	0.52	0.52
$A_2^{(1)}$	0.111	0.188	0.181	0.48	0.48
$\mathbb{P}_n^{(\infty)}[\mathcal{A}^{(2)}]$	0.31	0.4	0.29	1	
$P[\mathcal{A}^{(2)}]$	0.31	0.4	0.29		

Very quickly the algorithm stabilizes. Totals are the expected totals. For this example it took only 7 iterations.

Remark: we can rake on more than two partitions!

Notation of Raking-Ratio method

In turn N the algorithm does:

$$p^{(N+1)}(A) = \sum_{j=1}^{m_{N+1}} p^{(N)}(A \cap A_j^{(N+1)}) \frac{P(A_j^{(N+1)})}{p^{(N)}(A_j^{(N+1)})}.$$

Notation of Raking-Ratio method

In turn N the algorithm does:

$$p^{(N+1)}(A) = \sum_{j=1}^{m_{N+1}} p^{(N)}(A \cap A_j^{(N+1)}) \frac{P(A_j^{(N+1)})}{p^{(N)}(A_j^{(N+1)})}.$$

We define the raked empirical measure $\mathbb{P}_n^{(N)}$ to be $\mathbb{P}_n^{(0)} = \mathbb{P}_n$ and

$$\mathbb{P}_{n}^{(N+1)}(f) = \sum_{j=1}^{m_{N+1}} \mathbb{P}_{n}^{(N)}(f \mathbf{1}_{A_{j}^{(N+1)}}) \frac{P(A_{j}^{(N+1)})}{\mathbb{P}_{n}^{(N)}(A_{j}^{(N+1)})}.$$

In particular,
$$\mathbb{P}_n^{(N+1)}(A_j^{(N+1)}) = P(A_j^{(N+1)}), \forall j = 1, \dots, m_{N+1}.$$

Notation of Raking-Ratio method

Let $\alpha_n^{(N)}(f) = \sqrt{n}(\mathbb{P}_n^{(N)}(f) - P(f))$ the raked empirical process.

$$\alpha_n^{(N+1)}(f) = \sum_{j \leq m_{N+1}} \frac{P(A_j^{(N+1)})}{\mathbb{P}_n^{(N)}(A_j^{(N+1)})} \left(\alpha_n^{(N)}(f \mathbf{1}_{A_j^{(N+1)}}) - \mathbb{E}[f|A_j^{(N+1)}] \alpha_n^{(N)}(A_j^{(N+1)}) \right)$$

with $\mathbb{E}[f|A] = \frac{P(f1_A)}{P(A)}$.

In particular, $\alpha_n^{(N+1)}(A_j^{(N+1)}) = 0$, $\forall j = 1, ..., m_{N+1}$.

Remark: $\mathbb{E}[\alpha_n^{(N)}(f)] \neq 0 \Rightarrow \alpha_n^{(N)}$ is no more centered.

Raking-Ratio method

Goals

• Weak convergence in $\ell^{\infty}(\mathcal{F})$ of $\alpha_n^{(N)}(\mathcal{F})$ when $n \to +\infty$ towards a centered Gaussian process $\mathbb{G}^{(N)}(\mathcal{F})$;

Raking-Ratio method

Goals

- Weak convergence in $\ell^{\infty}(\mathcal{F})$ of $\alpha_n^{(N)}(\mathcal{F})$ when $n \to +\infty$ towards a centered Gaussian process $\mathbb{G}^{(N)}(\mathcal{F})$;
- Variance of $\mathbb{G}^{(N)}(f)$: is it lower than that of \mathbb{G} ? If a loop is performed with the Raking-Ratio method, does the variance decrease with each loop turn?

Raking-Ratio method

Goals

- Weak convergence in $\ell^{\infty}(\mathcal{F})$ of $\alpha_n^{(N)}(\mathcal{F})$ when $n \to +\infty$ towards a centered Gaussian process $\mathbb{G}^{(N)}(\mathcal{F})$;
- Variance of $\mathbb{G}^{(N)}(f)$: is it lower than that of \mathbb{G} ? If a loop is performed with the Raking-Ratio method, does the variance decrease with each loop turn?
- If we rake only two partitions, what's the limit of $\alpha_n^{(N)}(\mathcal{F})$ as $n, N \to +\infty$?

Main result

Weak convergence of $\alpha_n^{(N)}$

Under some entropy conditions on \mathcal{F} ,

$$(\alpha_n^{(0)},\dots,\alpha_n^{(N_0)}) \underset{n \to +\infty}{\overset{\mathcal{L}}{\longrightarrow}} (\mathbb{G}^{(0)},\dots,\mathbb{G}^{(N_0)}) \quad \text{in} \quad \ell^{\infty}(\mathcal{F}^{N_0} \to \mathbb{R}^{N_0})$$

with $\mathbb{G}^{(N)}$ the Gaussian process defined by

$$\mathbb{G}^{(0)} = \mathbb{G} \quad \text{and} \quad \mathbb{G}^{(N+1)}(f) = \mathbb{G}^{(N)}(f) - \sum_{j=1}^{m_{N+1}} \mathbb{E}[f|A_j^{(N+1)}] \mathbb{G}^{(N)}(A_j^{(N+1)})$$

Weak convergence of $\alpha_n^{(N)}$

Under some entropy conditions on \mathcal{F}_{i}

$$(\alpha_n^{(0)},\dots,\alpha_n^{(N_0)}) \underset{n \to +\infty}{\overset{\mathcal{L}}{\longrightarrow}} (\mathbb{G}^{(0)},\dots,\mathbb{G}^{(N_0)}) \quad \text{in} \quad \ell^{\infty}(\mathcal{F}^{N_0} \to \mathbb{R}^{N_0})$$

with $\mathbb{G}^{(N)}$ the Gaussian process defined by

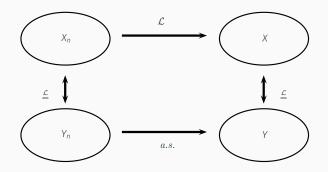
$$\mathbb{G}^{(0)} = \mathbb{G} \quad \text{and} \quad \mathbb{G}^{(N+1)}(f) = \mathbb{G}^{(N)}(f) - \sum_{j=1}^{m_{N+1}} \mathbb{E}[f|A_j^{(N+1)}] \mathbb{G}^{(N)}(A_j^{(N+1)})$$

Recall that

$$\alpha_n^{(N+1)}(f) = \sum_{j \leq m_{N+1}} \frac{P(A_j^{(N+1)})}{\mathbb{P}_n^{(N)}(A_j^{(N+1)})} \left(\alpha_n^{(N)}(f_{A_j^{(N+1)}}) - \mathbb{E}[f|A_j^{(N+1)}] \alpha_n^{(N)}(A_j^{(N+1)}) \right)$$

Main tool

Idea of strong approximation



Results: KMT, Berthet-Mason.

Strong approximation of $\alpha_n^{(N)}(\mathcal{F})$

Under some entropy conditions on \mathcal{F} we can construct on the same probability space X_1, \ldots, X_n and a version $\mathbb{G}_n^{(N)}$ of $\mathbb{G}^{(N)}$ such that for large n,

$$\mathbb{P}\left(\max_{0\leqslant N\leqslant N_0}||\alpha_n^{(N)}-\mathbb{G}_n^{(N)}||_{\mathcal{F}}>Cv_n\right)\leqslant \frac{1}{n^2},$$

with $v_n \rightarrow 0$.

By Borell-Cantelli,

$$\max_{0 \leqslant N \leqslant N_0} ||\alpha_n^{(N)} - \mathbb{G}_n^{(N)}||_{\mathcal{F}} = O_{\text{a.s.}}(V_n).$$

Consequences of strong approximation

Uniform estimation of bias and variance of Raking-Ratio method Under some entropy conditions on \mathcal{F} , there exists C > 0 such that

$$\begin{split} \limsup_{n \to +\infty} \frac{\sqrt{n}}{v_n} \max_{0 \leqslant N \leqslant N_0} \sup_{f \in \mathcal{F}} \left| \mathbb{E} \big[\mathbb{P}_n^{(N)}(f) \big] - P(f) \right| \leqslant C, \\ \limsup_{n \to +\infty} \frac{n}{v_n} \sup_{f \in \mathcal{F}} \left| \mathrm{Var} \big(\mathbb{P}_n^{(N)}(f) \big) - \frac{1}{n} \mathrm{Var} \big(\mathbb{G}^{(N)}(f) \big) \right| \leqslant C. \end{split}$$

Consequences of strong approximation

Uniform estimation of bias and variance of Raking-Ratio method

Under some entropy conditions on \mathcal{F} , there exists C > 0 such that

$$\begin{split} & \limsup_{n \to +\infty} \frac{\sqrt{n}}{v_n} \max_{0 \leqslant N \leqslant N_0} \sup_{f \in \mathcal{F}} \left| \mathbb{E}[\mathbb{P}_n^{(N)}(f)] - P(f) \right| \leqslant C, \\ & \limsup_{n \to +\infty} \frac{n}{v_n} \sup_{f \in \mathcal{F}} \left| \mathrm{Var}(\mathbb{P}_n^{(N)}(f)) - \frac{1}{n} \mathrm{Var}(\mathbb{G}^{(N)}(f)) \right| \leqslant C. \end{split}$$

Uniform Berry-Esseen bound

Under some entropy conditions on \mathcal{F} ,

$$\max_{0\leqslant N\leqslant N_0}\sup_{f\in\mathcal{F}}\sup_{x\in\mathbb{R}}\left|\mathbb{P}(\alpha_n^{(N)}(f)\leqslant \mathbf{X})-\mathbb{P}(\mathbb{G}^{(N)}(f)\leqslant \mathbf{X})\right|\leqslant C\mathbf{V}_n.$$

We denote

 $\begin{array}{l}
\cdot \ \mathbb{E}[f|\mathcal{A}^{(k)}] = (\mathbb{E}[f|A_1^{(k)}], \dots, \mathbb{E}[f|A_{m_k}^{(k)}])^t; \\
\cdot \ \mathbb{G}[\mathcal{A}^{(k)}] = (\mathbb{G}(A_1^{(k)}), \dots, \mathbb{G}(A_{m_k}^{(k)}))^t; \\
\cdot (P_{\mathcal{A}^{(k)}|\mathcal{A}^{(l)}})_{i,j} = P(A_i^{(k)}|A_i^{(l)}).
\end{array}$

Expression of $\mathbb{G}^{(N)}$

For all $N \in \mathbb{N}^*$ and $f \in \mathcal{F}$ it holds

$$\mathbb{G}^{(N)}(f) = \mathbb{G}(f) - \sum_{k=1}^{N} \Phi_k^{(N)}(f)^t \cdot \mathbb{G}[\mathcal{A}^{(k)}]$$

where

$$\Phi_{\textbf{k}}^{(N)}(\textbf{f}) = \mathbb{E}[\textbf{f}|\mathcal{A}^{(\textbf{k})}] + \sum_{\substack{1 \leqslant L \leqslant N-k \\ \textbf{k} < l_1 < \cdots < l_l \leqslant N}} (-1)^L P_{\mathcal{A}^{(l_1)}|\mathcal{A}^{(\textbf{k})}} P_{\mathcal{A}^{(l_2)}|\mathcal{A}^{(l_1)}} \cdots P_{\mathcal{A}^{(l_L)}|\mathcal{A}^{(l_L-1)}} \cdot \mathbb{E}[\textbf{f}|\mathcal{A}^{(l_L)}].$$

We denote
$$(\operatorname{Var}((X_1,\ldots,X_n)^t))_{i,j}=\operatorname{Cov}(X_i,X_j)$$

Variance and covariance of $\mathbb{G}^{(N)}$

For all $N \in \mathbb{N}^*$ and $f, g \in \mathcal{F}$ it holds

$$\begin{split} \operatorname{Var}(\mathbb{G}^{(N)}(f)) &= \operatorname{Var}(\mathbb{G}(f)) - \sum_{k=1}^N \Phi_k^{(N)}(f)^t \cdot \operatorname{Var}(\mathbb{G}[\mathcal{A}^{(k)}]) \cdot \Phi_k^{(N)}(f) \\ \operatorname{Cov}(\mathbb{G}^{(N)}(f), \mathbb{G}^{(N)}(g)) &= \operatorname{Cov}(\mathbb{G}(f), \mathbb{G}(g)) \\ &- \sum_{k=1}^N \operatorname{Cov}\left(\Phi_k^{(N)}(f)^t \cdot \mathbb{G}[\mathcal{A}^{(k)}], \Phi_k^{(N)}(g)^t \cdot \mathbb{G}[\mathcal{A}^{(k)}]\right) \end{split}$$

Corollary 1

For any
$$N \in \mathbb{N}$$
 and $f \in \mathcal{F}, \mathrm{Var}(\mathbb{G}^{(N)}(f)) \leqslant \mathrm{Var}(\mathbb{G}(f)).$
For any $\{f_1, \dots, f_m\} \in \mathcal{F}, \Sigma_m - \Sigma_m^{(N)}$ is positive definite with
$$\Sigma_n^{(N)} = \mathrm{Var}((\mathbb{G}^{(N)}(f_1), \dots, \mathbb{G}^{(N)}(f_m))^t),$$

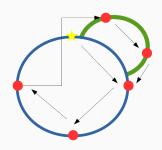
$$\Sigma_n = \mathrm{Var}((\mathbb{G}(f_1), \dots, \mathbb{G}(f_m))^t).$$

Corollary 2

Let $N_0, N_1 \in \mathbb{N}$ s.t. $N_1 \ge 2N_0$ and

$$\mathcal{A}^{(N_0-i)} = \mathcal{A}^{(N_1-i)}, \quad \forall 0 \leqslant i < N_0.$$

Then for all $f \in \mathcal{F}$, $Var(\mathbb{G}^{(N_1)}(f)) \leq Var(\mathbb{G}^{(N_0)}(f))$.



Results for 2 margins

We work with $= \{A, A^C\}, \mathcal{B} = \{B, B^C\}$. We denote

$$p_A=P(A),\quad p_{\overline{A}}=P(A^C),\quad p_B=P(B),\quad p_{\overline{B}}=P(B^C),\quad p_{AB}=P(A\cap B).$$

Calculation of $Var(\mathbb{G}^{(N)}(f))$

For N = 1, 2 we have

$$\begin{split} \operatorname{Var}(\mathbb{G}^{(1)}(f)) &= \operatorname{Var}(\mathbb{G}^{(0)}(f)) - \mathbb{E}[f|\mathcal{A}]^{t} \cdot \operatorname{Var}(\mathbb{G}[\mathcal{A}]) \cdot \mathbb{E}[f|\mathcal{A}] \\ &= \operatorname{Var}(\mathbb{G}^{(0)}(f)) - p_{A}p_{\overline{A}}(\mathbb{E}[f|A] - \mathbb{E}[f|A^{C}])^{2}, \\ \operatorname{Var}(\mathbb{G}^{(2)}(f)) &= \operatorname{Var}(\mathbb{G}^{(0)}(f)) - p_{B}p_{\overline{B}}(\mathbb{E}[f|B] - \mathbb{E}[f|B^{C}])^{2} \\ &- \left(p_{A}p_{\overline{A}} + \frac{p_{B}p_{\overline{B}}(p_{AB} - p_{A}p_{B})}{p_{A}^{2}p_{\overline{A}}^{2}}\right) (\mathbb{E}[f|A] - \mathbb{E}[f|A^{C}])^{2}, \end{split}$$

Results for 2 margins

Calculation of $Var(\mathbb{G}^{(\infty)}(f))$

We denote $\Delta_A=\mathbb{E}[f|A]-\mathbb{E}[f],$ $\Delta_B=\mathbb{E}[f|B]-\mathbb{E}[f],$ then

$$\begin{aligned} \operatorname{Var}(\mathbb{G}^{(\infty)}(f)) &= \operatorname{Var}(\mathbb{G}^{(0)}(f)) \\ &- \frac{p_A p_B \left(p_A \Delta_A^2 + p_B \Delta_B^2 - p_A p_B (\Delta_A - \Delta_B)^2 - 2 p_{AB} \Delta_A \Delta_B \right)}{p_A p_B p_{\overline{A}} p_{\overline{B}} - (p_{AB} - p_A p_B)^2} \end{aligned}$$

In particular, if $\Delta_A = \Delta_B = 0$ then $\mathrm{Var}(\mathbb{G}^{(\infty)}(f)) = \mathrm{Var}(\mathbb{G}^{(0)}(f))$. If A is independent of B then

$$\operatorname{Var}(\mathbb{G}^{(\infty)}(f)) = \operatorname{Var}(\mathbb{G}^{(0)}(f)) - \left(\frac{p_A}{p_{\overline{A}}}\Delta_A^2 + \frac{p_B}{p_{\overline{B}}}\Delta_B^2\right).$$

Extension 1: re-sampling method with auxiliary information

Notation

Bootstrap is a statistical method for re-sampling. It replaces P by \mathbb{P}_n .

A general way to define the bootstrap is to multiply $f(X_i)$ by a random variable Z_i such that $\mathbb{E}[Z_i|X_i]=1$ and $\mathrm{Var}(Z_i)=1$.

Notation

Bootstrap is a statistical method for re-sampling. It replaces P by \mathbb{P}_n .

A general way to define the bootstrap is to multiply $f(X_i)$ by a random variable Z_i such that $\mathbb{E}[Z_i|X_i]=1$ and $\mathrm{Var}(Z_i)=1$.

We define the bootstrapped empirical measure and process:

$$\mathbb{P}_{n}^{*}(f) = \frac{1}{\sum_{i=1}^{n} Z_{i}} \sum_{i=1}^{n} Z_{i}f(X_{i}), \qquad \alpha_{n}^{*}(f) = \sqrt{n}(\mathbb{P}_{n}^{*}(f) - \mathbb{P}_{n}(f)).$$

Notation

Bootstrap is a statistical method for re-sampling. It replaces P by \mathbb{P}_n .

A general way to define the bootstrap is to multiply $f(X_i)$ by a random variable Z_i such that $\mathbb{E}[Z_i|X_i]=1$ and $\mathrm{Var}(Z_i)=1$.

We define the bootstrapped empirical measure and process:

$$\mathbb{P}_{n}^{*}(f) = \frac{1}{\sum_{i=1}^{n} Z_{i}} \sum_{i=1}^{n} Z_{i} f(X_{i}), \qquad \alpha_{n}^{*}(f) = \sqrt{n} (\mathbb{P}_{n}^{*}(f) - \mathbb{P}_{n}(f)).$$

Goal

- Make the strong approximation of α_n^* to \mathbb{G}^* , a P-Brownian bridge independent of \mathbb{G} ;
- Bootstrap the Raking-Ratio empirical process to simulate its distribution.

Strong approximation of the bootstrapped empirical process

Strong approximation of α_n^*

Under some entropy conditions on \mathcal{F} we can construct on the same probability space (X_n, Z_n) and $(\mathbb{G}_n, \mathbb{G}_n^*)$ of P-Brownian bridge such that for large n,

$$\mathbb{P}\left(\{||\alpha_n - \mathbb{G}_n||_{\mathcal{F}} > C v_n\} \bigcup \{||\alpha_n^* - \mathbb{G}_n^*||_{\mathcal{F}} > C v_n\}\right) \leqslant \frac{1}{n^2},$$

with $v_n \to 0$ depends on the entropy of (\mathcal{F}, P) .

Goal

How can we adapt the bootstrap method to simulate the distribution of the Raking-Ratio empirical process?

Goal

How can we adapt the bootstrap method to simulate the distribution of the Raking-Ratio empirical process?

$$\mathbb{P}_n^{*(0)} = \mathbb{P}_n^*$$

Goal

How can we adapt the bootstrap method to simulate the distribution of the Raking-Ratio empirical process?

$$\mathbb{P}_n^{*(0)} = \mathbb{P}_n^*$$
 and

$$\mathbb{P}_{n}^{*(N+1)}(f) = \sum_{j=1}^{m_{N+1}} \mathbb{P}_{n}^{*(N)}(f \mathbf{1}_{A_{j}^{(N+1)}}) \frac{\mathbb{P}_{n}(A_{j}^{(N+1)})}{\mathbb{P}_{n}^{*(N)}(A_{j}^{(N+1)})},$$

$$\alpha_{n}^{*(N)}(f) = \sqrt{n}(\mathbb{P}_{n}^{*(N)}(f) - \mathbb{P}_{n}(f)).$$

Goal

How can we adapt the bootstrap method to simulate the distribution of the Raking-Ratio empirical process?

$$\mathbb{P}_n^{*(0)} = \mathbb{P}_n^*$$
 and

$$\mathbb{P}_{n}^{*(N+1)}(f) = \sum_{j=1}^{m_{N+1}} \mathbb{P}_{n}^{*(N)}(f \mathbf{1}_{A_{j}^{(N+1)}}) \frac{\mathbb{P}_{n}(A_{j}^{(N+1)})}{\mathbb{P}_{n}^{*(N)}(A_{j}^{(N+1)})},$$

$$\alpha_{n}^{*(N)}(f) = \sqrt{n}(\mathbb{P}_{n}^{*(N)}(f) - \mathbb{P}_{n}(f)).$$

Result

 $\alpha_n^{*(N)} \to \mathbb{G}^{*(N)}$ in $\ell^{\infty}(\mathcal{F})$ and $\mathbb{G}^{*(N)}$ has the same distribution as $\mathbb{G}^{(N)}$.

Thank you for your attention!

Questions?