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Let:

© Xq,..., X, 1Li.d. with unknown law P on a measurable space
(X,A4);

=AM = (A Ay 3 partition of & st. we know P(A,.(N)) -

- Pa(f) = 1 37, f(X;) the empirical measure indexed by F ;

~n

- an(f) = Vn(Pa(f) — P(f)) the empirical process indexed by F.

If 7 is a Donsker class, an % G in [®(F) where G is the
n—+00
P-brownian bridge, i.e the Gaussian process with covariance

Cov(G(f), G(9)) = P(fg) — P(HP(9)-
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Raking-ratio method



Example of the Raking-Ratio method

Literature: Deming/Stephan, Sinkhorn, Ireland/Kullback.

Description:

AP T AD T A2 TRafAD] [ PLAD]
A 02 |025| 01 | 055 0.52
AV 101 ]02]015] 045 0.48
P,[A®] | 03 | 045|025 1
P[AM] 1031 | 04 | 0.29

We have a table of frequencies whose margins do not correspond to
known margins. The algorithm proposes to correct this



Example of the Raking-Ratio method

AD T AP T AL TPO[AO] | PLAO]

AD 0.189 | 0.236 | 0.095 | 052 0.52
1Y 011 | 021 | 016 | 048 0.48
P [AD] | 0299 | 0.446 | 0.255 1

P[A®] | 031 | 04 | 029

The totals for each line are first corrected by applying a rule of three.
Each cell is multiplied by the ratio of the expected total of each line
on the total of each line.



Example of the Raking-Ratio method

AD T A7 T AP TPPAD] [ PIAD]
AD 0.196 | 0.212 | 0.108 | 0.516 0.52
A 0.114 | 0.188 | 0.182 | 0.484 0.48

PPLA®] | 031 | 04 | 0.29 1

PLA®] | 031 | 04 | 029

The same reasoning is applied to correct the totals for each column.
These last two operations are repeated in a loop.



Example of the Raking-Ratio method

AD T AP [ AP T POAM] [ pLAO]

AD 0199 | 0212 | 0.109 | 052 0.52
A 0111 0188 [ 0.181 | 048 0.48
P{[A@] | 031 | 04 | 029 1

P[A@] 031 | 04 | 0.29

Very quickly the algorithm stabilizes. Totals are the expected totals.
For this example it took only 7 iterations.

Remark: we can rake on more than two partitions!
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In turn N the algorithm does:

M1 " ( _(NJFU)
1
p(N+1)(A) _ Z p(N)(AmAj( + )) J

s pW(AMY)



Notation of Raking-Ratio method

In turn N the algorithm does:

My 41 (N4 ( (/\/+1))
(N+1) (4) — M ~AANF YT
AUV = 3, o8 A,

We define the raked empirical measure ]P’EN) to be Pﬁ,o) =P, and

(N4 ) My +1 ) P(A(qu))
Py (f) = Z Pr (A1) =
pe P (A)

In particular, IP,SN+W>(A1(N+1)) = P(A/.(N“)),Vj =1,..., My



Notation of Raking-Ratio method

Let aéN)(]‘) = ﬁ(]P’,%N) (f) — P(f)) the raked empirical process.

N41) P(AMY) (N) (N+1)7 (N) ( p(N+1)
+1 J +1 T
o = Y p<><A<>><“ (o) = BIA ol 4
JSMygq =N J

P(f1a)
P(A) -

with E[flA] =
In particular, a,(,N“)(AfN”)) =0, Vj=1,..., My

Remark: E[aﬁN) N #0= o' is no more centered.
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Raking-Ratio method

Goals

- Weak convergence in ¢*(F) of agN)(}‘) when n — 400 towards a
centered Gaussian process GV (F) ;

- Variance of G (f): is it lower than that of G? If a loop is
performed with the Raking-Ratio method, does the variance
decrease with each loop turn?

- If we rake only two partitions, what's the limit of aﬁ,N) (F) as
n,N — 4o0?



Weak convergence of "
Under some entropy conditions on F,

@,...,af") L (GO,...,GM)) in ¢®(F% - RW)

)
n—+4oo
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Weak convergence of "
Under some entropy conditions on F,

@,...,af") L (GO,...,GM)) in ¢®(F% - RW)

)
n—+4oo

with G™) the Gaussian process defined by

MN+1
GO = ¢ and G(N+1)(D — G(N)(D - 2 EmA;N-&—U]G(N)(A}_(N-&-U)
j=1

Recall that
p(aM D)y
N+1 N N+1)7  (N) /A (N+1
= X ey (o8 100m) — AT Vol "))
JSMyyq =N j /



D=

| |

—
@ s

Results: KMT, Berthet-Mason.

1



N

Strong approximation of o, ’ (F)
Under some entropy conditions on F we can construct on the same

probability space Xi, ..., X, and a version GM of G such that for
large n,

(N) |
P(Og;vax Ha — Gy, ||}->Cvn><n2,
with v, — 0.

By Borell-Cantelli,

max ‘|O‘£7N) - GEN)HF = Oas.(Vn)-
0



Consequences of strong approximation

Uniform estimation of bias and variance of Raking-Ratio method
Under some entropy conditions on F, there exists C > 0 such that

lim sup \/—ﬁ max  sup E[IP’S]N) H] - P(f)‘ < C,

n—-+o0 Vn O<N<N0fef

) n
limsup — sup
n—+w Vn feF

Var(P{(f)) — %Var(G(N) (f))‘ <C



Consequences of strong approximation

Uniform estimation of bias and variance of Raking-Ratio method
Under some entropy conditions on F, there exists C > 0 such that

lim sup \/—ﬁ max  sup E[IP’S]N) H] - P(f)‘ < C,

n—-+o0 Vn O<N<N0fef

) n
limsup — sup
n—+w Vn feF

Var(P{(f)) — %Var(G(N) (f))‘ <C

Uniform Berry-Esseen bound
Under some entropy conditions on F,

(N) B (N)
nax supsup |P N < x) —P(GM(H < x)| < Cv,.
OSNngO f(gﬁp xlejﬂg (an ( ) ( ( ) n



Raking-Ratio results

We denote
- E[flA®] = (E[AAP], ... E[AR]);
- GLA®] = (G(A"), ..., GAT));
* (Pawiam)ij = P(A,-(k) |A,'([))~

~(N)

Expression of G
For all N e N* and fe F it holds

N
6" () =G - 3 o () GAY]
k=1
where

o () =ERAP+ Y (NP aamPaiam - P awaa-n EIAD].
I<SL<N—R
kR<h<---<l <N

14



Raking-Ratio results

We denote (Var((Xi, ..., Xn)"))ij = Cov(X;, X))

Variance and covariance of GI")
Forall Ne N* and f,g € F it holds

Var(G™(f) = Var(G(f) — Z oM (- Var(GLAM]) - o (f)
k=1
Cov(GM(f),GM(g)) = Cov(G(f),G(g))

_ Y Cov (8" "- GLA®], 0" (g)" - GLAM])
k=1



Raking-Ratio results

Corollary 1
Forany N e N and fe F, Var(GM (f) < Var(G(f)).

Forany {fi,....fmt e F,Xm — Z%N) is positive definite with

= = var(GM(f),...,GM (fn))"),
Y, = Var((G(fy), . . .,G(fm))t).

16



Raking-Ratio results

Corollary 2
Let No, N e Nst. Ny = 2Ng and

AWM= — A=) o < i < N

Then for all f e F, Var(GM™) (f)) < Var(GMo) (f)).

O



Results for 2 margins

We work with ={A, A%}, B = {B, B‘}. We denote

Pa = P(A)’ Pz = P(AC)> Ps = P(B)/ Pg = P(BC)7 Pag = P(A N B)

Calculation of Var(G™ (f))
For N = 1,2 we have
Var(G(f)) = Var(G(f)) — E[flA]" - Var(G[A]) - E[f]A]
= Var(G* (f)) — papz(E[fIA] — E[f]A])?,
Var(GP(f)) = Var(G(f)) — pspg(E[f1B] — E[f]B])’

- <pApA + poB(p;f - pApB)) (E[f14] — E[fA),
APx




Results for 2 margins

Calculation of Var(G*™)(f))
We denote Ay = E[f]A] — E[f], As = E[f|B] — E[f], then
Var(G®)(f)) = Var(G?(f))

_ PapPs (Pal3 + P} — paps(Aa — Ag)? — 2pasAnlg)
PaPsPzPg — (Pag — PaPs)?

In particular, if Ay = Ag = 0 then Var(G(®)(f)) = Var(G© (f)).
If Ais independent of B then

Var(G®(f)) = Var(GO () - <pAA§ + "BAZB) .

19



Extension 1: re-sampling method
with auxiliary information




Introduction

Notation
Bootstrap is a statistical method for re-sampling. It replaces P by P,.

A general way to define the bootstrap is to multiply f(X;) by a random
variable z; such that E[Z;|X;] = 1 and Var(Z;) = 1.
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Notation
Bootstrap is a statistical method for re-sampling. It replaces P by P,.

A general way to define the bootstrap is to multiply f(X;) by a random
variable z; such that E[Z;|X;] = 1 and Var(Z;) = 1.

We define the bootstrapped empirical measure and process:

n Z Zlf arﬂ;(ﬂ ZW(P:(JP)_PH(D)-
=1 ’i 1
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Introduction

Notation
Bootstrap is a statistical method for re-sampling. It replaces P by P,.

A general way to define the bootstrap is to multiply f(X;) by a random
variable z; such that E[Z;|X;] = 1 and Var(Z;) = 1.

We define the bootstrapped empirical measure and process:

PR () Z,f an () = Vn(®5 (f) — Pa()).
Z/ 1 ),‘ 1

Goal

- Make the strong approximation of oif to G*, a P-Brownian bridge
independent of G ;
- Bootstrap the Raking-Ratio empirical process to simulate its
distribution.
20



Strong approximation of the bootstrapped empirical process

Strong approximation of ot

Under some entropy conditions on F we can construct on the same
probability space (Xn,Zn) and (G,,, G¥) of P-Brownian bridge such
that for large n,

1
P ({llan — Gallx > Cva} | lla = G3ll= > Cva}) < —,

with v, — 0 depends on the entropy of (F, P).

21



Bootstrap and Raking-Ratio

Goal
How can we adapt the bootstrap method to simulate the distribution
of the Raking-Ratio empirical process?
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Bootstrap and Raking-Ratio

Goal
How can we adapt the bootstrap method to simulate the distribution
of the Raking-Ratio empirical process?

P =Py
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Bootstrap and Raking-Ratio

Goal
How can we adapt the bootstrap method to simulate the distribution
of the Raking-Ratio empirical process?

PF® — p# and
PH(A/(N+1))
pr® (Aj(NJH)) ’

ax® ) = vn@:" () — Ba(f).

Mn41
B0 = 3 B (f10e0)
j=1
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Bootstrap and Raking-Ratio

Goal
How can we adapt the bootstrap method to simulate the distribution
of the Raking-Ratio empirical process?

PF® — p# and

PH(A/(N+1))
P:(N) (Aj_(N+1)) )
ar™f) = vn@:" (f) — Ba ().

Mn41
B0 = 3 B (f10e0)
j=1

Result
af™ — G*M) in ¢*(F) and G*™ has the same distribution as G

22



Thank you for your attention!

Questions?

22
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