Travelling wave solutions for an evolutionary-epidemic problem arising in plant disease.

Lara Abi Rizk

20 mai 2019

(1) The model

Model with a spatial structure

Model the epidemiological and evolutionary dynamics of spore-producing pathogens in homogeneous host population of plants.

$$
\left\{\begin{array}{l}
\frac{\partial u(t, x)}{\partial t}=\Lambda-\mu u(t, x)-u(t, x) \int_{\mathbb{R}^{M}} \beta(y) w(t, x, y) d y \\
\frac{\partial v(t, x, y)}{\partial t}=\beta(y) u(t, x) w(t, x, y)-\mu_{v} v(t, x, y), \\
\eta \frac{\partial w(t, x, y)}{\partial t}+\left(1-\frac{\partial^{2}}{\partial x^{2}}\right) w(t, x, y)=\int_{\mathbb{R}^{M}} J\left(y-y^{\prime}\right) r\left(y^{\prime}\right) v\left(t, x, y^{\prime}\right) d y^{\prime},
\end{array}\right.
$$

- $x \in \mathbb{R}$ (space), $y \in \mathbb{R}^{M}$ (phenotypic trait value), t (time).
- $u(t, x), v(t, x, y)$ and $w(t, x, y)$ denote the density of healthy population, infected population and airborne spores, resp.
- $\Lambda>0$ the influx of new healthy population, $\mu>0$ natural death rate, $\eta>0$ time scaling parameter and J mutation kernel.

Symmetric re-formulation of the model

We set $\eta=0$ so that deposition of spores is fast with respect to the other processes.

Self-adjoint reformulation by setting $\Theta(y)=\sqrt{r(y) \beta(y)}$ and other parameter re-scaling lead

$$
\left\{\begin{array}{l}
\frac{\partial u(t, x)}{\partial t}=\Lambda-u(t, x)-u(t, x) \int_{\mathbb{R}^{M}} \beta(z) w(t, x, y) d y \\
\frac{\partial v(t, x, y)}{\partial t}=u(t, x) w(t, x, y)-\mu_{v} v(t, x, y) \\
\left(1-\frac{\partial^{2}}{\partial x^{2}}\right) w(t, x, y)=\int_{\mathbb{R}^{M}} \Theta(y) \Theta\left(y^{\prime}\right) J\left(y-y^{\prime}\right) v\left(t, x, y^{\prime}\right) d y^{\prime}
\end{array}\right.
$$

$\Theta(y)$ denotes the fitness function, and we consider the operator L defined
by,

$$
L[\varphi](y)=\Theta(y) \int_{\mathbb{R}^{M}} J\left(y-y^{\prime}\right) \Theta\left(y^{\prime}\right) \varphi\left(y^{\prime}\right) d y^{\prime}, y \in \mathbb{R}^{M}
$$

(1) The model

(2) Travelling waves
(3) The minimal wave speed
(4) Main results

Assumptions

We assume :
a) The mutation kernel J is continuous and satisfies $J(-y)=J(y)$ for all $y \in \mathbb{R}^{N}$,

$$
J \in L^{1}\left(\mathbb{R}^{N}\right) \cap L^{\infty}\left(\mathbb{R}^{N}\right), J>0 \text { and } \int_{\mathbb{R}^{N}} J(y) d y=1
$$

a) The fitness function $\Theta: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is non-negative, compactly supported and continuous. We denote by $\Omega \subset \mathbb{R}^{M}$ the open set defined by

$$
\Omega=\left\{y \in \mathbb{R}^{N}: \Theta(y)>0\right\} .
$$

c) We also assume that $\beta: \mathbb{R}^{N} \rightarrow \mathbb{R}$ with $\beta \not \equiv 0$ is a non-negative continuous function with compact support and there exists some constant $K>0$ such that

$$
0 \leq \beta(y) \leq K \Theta(y), \forall y \in \mathbb{R}^{N}
$$

Epidemic threshold and equilibria

Under the above assumptions, $\varphi \mapsto \Theta J *(\Theta \varphi)$ is irreducible, positive and compact in $L^{p}(\Omega)$ (and self-adjoint in L^{2}) so that spectral decomposition $\left(\varphi_{n}, \lambda_{n}\right)_{n \geq 1}$ with

$$
\lambda_{1}>\lambda_{2} \geq \cdots \geq \lambda_{n} \rightarrow 0 \text { as } n \rightarrow \infty \text { and } \varphi_{1}>0
$$

We set $\mathcal{R}_{0}=\frac{\lambda_{1} \Lambda}{\mu_{\nu}}$, the epidemic threshold so that
(i) Single equilibrium when $\mathcal{R}_{0} \leq 1$, the $\operatorname{DFE}(U=\Lambda)$,
(ii) Two equilibria when $\mathcal{R}_{0}>1$, the DFE and an endemic one,

$$
(U, V, W)=\left(U^{*}, V^{*} \varphi_{1}(\cdot), W^{*} \varphi_{1}(\cdot)\right)
$$

with

$$
\left(U^{*}, V^{*}, W^{*}\right)=\left(\frac{\Lambda}{\mathcal{R}_{0}}, \frac{\mathcal{R}_{0}-1}{\lambda_{1} \beta_{1}}, \frac{\mathcal{R}_{0}-1}{\beta_{1}}\right) \text { and } \beta_{1}=\left\langle\beta, \varphi_{1}\right\rangle_{L^{2}} .
$$

Travelling wave

Definition :

$(u(t, x), v(t, x, y), w(t, x, y))$ is a TW with speed $c>0$ if $(u(t, x), v(t, x, y), w(t, x, y)) \equiv(U(\xi), V(\xi, y), W(\xi, y))$ with $\xi=x+c t$, with the wave profile (U, V, W) satisfying the following properties :

- $U \in C^{1} \cap L^{\infty}(\mathbb{R}), V, W: \mathbb{R} \rightarrow L^{1}\left(\mathbb{R}^{N}\right), C^{1}$ and C^{2} and

$$
\sup _{\xi \in \mathbb{R}}\left[\|V(\xi, \cdot)\|_{L^{1}\left(\mathbb{R}^{N}\right)}+\|W(\xi, \cdot)\|_{L^{1}\left(\mathbb{R}^{N}\right)}\right]<\infty
$$

- $(U(\xi), V(\xi, y), W(\xi, y))$ positive.
- (U, V, W) satisfies the convergence to the DFE at $\xi=-\infty$

$$
\lim _{\xi \rightarrow-\infty}\left(\begin{array}{c}
U(\xi) \\
V(\xi, y) \\
W(\xi, y)
\end{array}\right)=\left(\begin{array}{l}
\Lambda \\
0 \\
0
\end{array}\right) \text { in } \mathbb{R} \times L^{1}\left(\mathbb{R}^{M}\right) \times L^{1}\left(\mathbb{R}^{M}\right)
$$

Wave profile system

A wave profile (U, V, W) with speed c satisfies

$$
\begin{aligned}
& \left\{\begin{array}{l}
c \frac{d}{d \xi} U(\xi)=\Lambda-U(\xi)-U(\xi) \int_{\Omega} \beta(z) W(\xi, y) d y \\
c \frac{\partial}{\partial \xi} V(\xi, y)=U(\xi) W(\xi, y)-\mu_{\nu} V(\xi, y) \\
\left(1-\frac{\partial^{2}}{\partial \xi^{2}}\right) W(\xi, y)=L[V(\xi, \cdot)](y)
\end{array}\right. \\
& \text { with } \lim _{\xi \rightarrow-\infty}\left(\begin{array}{c}
U(\xi) \\
V(\xi, y) \\
W(\xi, y)
\end{array}\right)=\left(\begin{array}{c}
\Lambda \\
0 \\
0
\end{array}\right) \text { in } \mathbb{R} \times L^{1}(\Omega) \times L^{1}(\Omega)
\end{aligned}
$$

(1) The model

(2) Travelling waves

(3) The minimal wave speed

The minimal wave speed

The antsatz

$$
V(\xi, y) \approx e^{\lambda \xi} \phi(y) \text { and } W(\xi, y) \approx e^{\lambda \xi} \psi(y) \text { as } \xi \rightarrow-\infty,
$$

with the exponential decay rate $\lambda>0$ while $U(\xi) \approx \Lambda$ for $\xi \ll-1$. Hence formally we get

$$
\begin{aligned}
\left\{\begin{array}{l}
\left(c \lambda+\mu_{v}\right) \phi=\Lambda \psi, \\
\left(1-\lambda^{2}\right) \psi=L \phi,
\end{array}\right. & \Leftrightarrow\left\{\begin{array}{l}
\left(c \lambda+\mu_{v}\right) \phi=\Lambda \psi, \\
\frac{1}{\Lambda}\left(1-\lambda^{2}\right)\left(c \lambda+\mu_{v}\right) \phi=L \phi .
\end{array}\right. \\
& \Rightarrow \frac{1}{\Lambda}\left(1-\lambda^{2}\right)\left(c \lambda+\mu_{v}\right)=\rho(L)=\lambda_{1} .
\end{aligned}
$$

We define $\mathcal{K}(\lambda, c)=\left(1-\lambda^{2}\right)\left(c \lambda+\mu_{v}\right)-\mu_{v} \mathcal{R}_{0}$ and

$$
c^{\star}=\inf \{c>0, \exists \lambda>0, \mathcal{K}(\lambda, c)=0\} .
$$

(1) The model

(2) Travelling waves
(3) The minimal wave speed
(4) Main results

Non existence

We obtain the following non-existence result
(i) If $\mathcal{R}_{0} \leq 1$ then the problem does not has any travelling wave solution.
(ii) If $\mathcal{R}_{0}>1$ then the problem does not admit any travelling wave solution with wave speed $c \in\left(0, c^{\star}\right)$.

Simple structure of the waves

Assume that $\mathcal{R}_{0}>1$. Let (U, V, W) be any TW with speed $c \geq c^{\star}$. Then one has
(i) $(V(\xi, y), W(\xi, y)) \equiv\left(V(\xi) \varphi_{1}(y), W(\xi) \varphi_{1}(y)\right)$
(ii) The function $(U(\xi), V(\xi), W(\xi))$ satisfies the 4th order ODE

$$
\left\{\begin{array}{l}
c U^{\prime}(\xi)=\Lambda-U(\xi)-\beta_{1} U(\xi) W(\xi), \\
c V^{\prime}(\xi)=U(\xi) W(\xi)-\mu_{\vee} V(\xi), \\
\lambda_{1} V(\xi)+\left(\frac{d^{2}}{d \xi^{2}}-1\right) W(\xi)=0,
\end{array} \quad \xi \in \mathbb{R},\right.
$$

and the limit behaviours at $\xi= \pm \infty$:

$$
\lim _{\xi \rightarrow-\infty}\left(\begin{array}{c}
U(\xi) \\
V(\xi) \\
W(\xi)
\end{array}\right)=\left(\begin{array}{c}
\Lambda \\
0 \\
0
\end{array}\right) \text { and } \lim _{\xi \rightarrow \infty}\left(\begin{array}{c}
U(\xi) \\
V(\xi) \\
W(\xi)
\end{array}\right)=\left(\begin{array}{c}
U^{*} \\
V^{*} \\
W^{*}
\end{array}\right),
$$

Reduction of the ∞-dim travelling wave profile system of equations to a 4-dim ODE system.

Existence of wave

Assume $\mathcal{R}_{0}>1$. Then for each $c \geq c^{\star}$, the above 4 th order ODE has an entire positive solution with the expected behaviour at $\xi= \pm \infty$.

Idea of the proof :

The proof of these results is based on the projection of the travelling profile (V, W) on the eigenvectors $\left(\varphi_{n}\right)$ of the linear operator L.

Reference : L. Abi Rizk et al., Travelling wave solutions for a non-local evolutionary-epidemic system, J. Differential Equations (2019), https ://doi.org/10.1016/j.jde.2019.02.012

